
An E±cient Algorithm for Su±x Sorting

Zhan Peng*, Yuping Wang*,‡, Xingsi Xue† and

Jingxuan Wei*

*School of Computer Science and Technology

Xidian University

Xi'an, Shaanxi 710071, P. R. China
†School of Information Science and Engineering

Fujian University of Technology

Fuzhou, Fujian 350118, P. R. China
‡ywang@xidian.edu.cn

Received 2 September 2015

Accepted 12 February 2016
Published 14 April 2016

The Su±x Array (SA) is a fundamental data structure which is widely used in the applications

such as string matching, text index and computation biology, etc. How to sort the su±xes of a
string in lexicographical order is a primary problem in constructing SAs, and one of the widely

used su±x sorting algorithms is qsufsort. However, qsufsort su®ers one critical limitation that

the order of su±xes starting with the same 2k characters cannot be determined in the kth
round. To this point, in our paper, an e±cient su±x sorting algorithm called dsufsort is pro-

posed by overcoming the drawback of the qsufsort algorithm. In particular, our proposal

maintains the depth of each unsorted portion of SA, and sorts the su±xes based on the depth in

each round. By this means, some su±xes that cannot be sorted by qsufsort in each round can be
sorted now, as a result, more sorting results in current round can be utilized by the latter rounds

and the total number of sorting rounds will be reduced, which means dsufsort is more e±cient

than qsufsort. The experimental results show the e®ectiveness of the proposed algorithm, es-

pecially for the text with high repetitions.

Keywords : Su±x sorting; su±x array; text index; computation biology.

1. Introduction

How to sort the su±xes of a given string in lexicographical order is a primary

problem in constructing SAs. Currently, one of the widely used algorithms for this

problem is the qsufsort13 algorithm, which sorts the su±xes round by round until all

the su±xes are in lexicographical order. In particular, the su±xes are initially sorted

based on their ¯rst characters, then after each round, the checked pre¯x of each su±x

is doubled and the su±xes are sorted according to a doubled number of characters.

As a result, after the kth round, the su±xes are sorted according to their ¯rst 2k

International Journal of Pattern Recognition
and Arti¯cial Intelligence

Vol. 30, No. 6 (2016) 1659018 (16 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218001416590187

1659018-1

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218001416590187

characters. It means that the order of su±xes whose ¯rst 2k are the same cannot be

determined after the kth round. Therefore, for su±xes with large LCP (length of the

Longest Common Pre¯x), qsufsort needs several rounds to determine their order,

which leads to a considerable time cost.

To overcome the drawback of qsufsort, in this paper, we present an e±cient su±x

sorting algorithm called dsufsort which is based on the qsufsort algorithm. Speci¯-

cally, for each unsorted portion of SA (called an unsorted bucket), the dsufsort

maintains the max known LCP of the su±xes in that bucket (called depth of the

bucket), and update that depth timely during processing. Then, in each round, the

su±xes in each unsorted bucket are sorted based on their own bucket depth. By this

means, some su±xes can be sorted according to more than 2k characters in the kth

round, which means the su±xes starting with the same 2k characters which cannot

be sorted by the qsufsortmay be sorted now. Since more su±xes can be sorted now in

each round, more sorting results in current round can be utilized by the latter rounds,

and hence the total number of sorting rounds will be reduced. Therefore, dsufsort is

more e±cient than qsufsort, especially for su±xes with large LCP.

The rest of this paper is organized as follows. In Sec. 2, we introduce the related

work. In Sec. 3, we list some notations and terminologies used in this paper. The

details of qsufsort and dsufsort are described in Sec. 4. In Sec. 5, we discuss some

e±cient implementation techniques for the proposed algorithm. Experimental results

are shown in Sec. 6. Section 7 concludes the paper and proposes some open problems.

2. Related Work

During the past two decades, a large number of su±x array construction algorithms

with di®erent time and space complexities have been proposed. Next, a brief intro-

duction is given on some of them, for more details, please see the surveys.3,20

Computing the SA from su±x trees is one of the most simplest methods. The

limitation of this method is its high space and time requirement. Manber and Myers14

present the ¯rst e±cient algorithm with time complexity OðnlognÞ to directly con-

struct the su±x arrays. The algorithm uses a technique called pre¯x doubling which

originates from Karp10. It sorts the su±xes initially by their ¯rst characters and then

doubles the sorted pre¯x in each of the following rounds. Larsson and Sadakane13

present an algorithm called qsufsort to improve Manber's algorithm. Unlike the

Manber's algorithm that checks every part of SA (called a bucket) in each round, the

qsufsort marks the buckets of SA that have been completely sorted in previous

passes. Then in each pass, it skips the sorted buckets and sorts the unsorted buckets

only. Although the qsufsort algorithm has the same asymptotic time complexity as

that of Manber and Myers in theory, it is much faster in practice. Schurmann and

Stoye22 present an Oðn2Þ method called bpr. Unlike the Manber's algorithm and

qsufsort which use a broad-¯rst strategy to sort the buckets round by round, the bpr

algorithm adopts a depth-¯rst sorting strategy: for each unsorted bucket, it recur-

sively sorts the bucket untill all the su±xes in that bucket have been completely

Z. Peng et al.

1659018-2

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

sorted. Rajasekaran and Nicolae21 proposed a new algorithm called RadixSA with

time complexity OðnlognÞ. Di®erent from the three algorithms introduced above

which simply sort the buckets from left to right, the RadixSA sorts the buckets in a

special order: suppose the ith su±x Si resides in bucket Bi, and the algorithm sorts

bucket Bn ¯rst, then storts Bn�1; . . . ; B1 in order. This order ensures that after

sorting Bi, Si will be in its ¯nal location in SA.

Seward23 presents another two su±xes sorting algorithms: Copy and Cache. They

initially sort the su±xes according to their ¯rst two characters, then they sort the

unsorted buckets from small to large, once a bucket is completely sorted, the sorting

result can be used by future processing. However, the Copy and Cache sort all

buckets with the same sort routine, and this is ine±cient for su±xes that share a very

long common pre¯x. To address this ine±ciency, Manzini and Ferragina15 presents

an algorithm called deep-shallow. Whenever a bucket is being sorted, deep-shallow

uses a shallow sorter for the su±xes with a short common pre¯x, and a deep sorter

for the su±xes with a long common pre¯x. Although the deep-shallow has a good

performance, its complicated framework limits its application in practice.

All the algorithms introduced above have a super-linear time complexity. How-

ever, there exist some algorithms that have a linear time complexity, among which

KA,12KS9 and KSP11 are three notable ones. The KSP seems adopting a similar

idea as Farach's algorithm4 on su±x trees by using a very similar and complex

merging step. The KS algorithm uses a divide-and-conquer approach which includes

three steps: (1) recursively construct the SA for su±xes starting at positions

i where i mod 3 6¼ 0; (2) construct the SA of the remaining su±xes using the result of

the ¯rst step; (3) merge the two SAs into one. The KA is an improvement of the two-

stage algorithm.7 It classi¯es all the su±xes in the string into two classes: L-type and

S-type. Then it recursively sorts all the L-type su±xes, after that, the order of the S-

type su±xes can be induced by the order of L-type su±xes. Nong19 presents two

algorithms SA-IS and SA-DS to improve KA by exploiting the variable-length

leftmost S-type substrings and the ¯xed-length d-critical substrings for problem

reduction, and the simple algorithms for sorting these sampled substrings. Recently,

Nong16 further presents another linear time algorithm called SACA-K for constant

alphabets which only usesOð1Þ workspace. Although the linear algorithms have good

theoretical time complexity, but in practice they are usually not as fast as ¯nely

tuned super-linear algorithms for real world data.21

Currently, some external-memory algorithms8,17,18 have been proposed for con-

structing large SAs, where the space needed by external memory algorithms is

mainly supplied by low-cost massive disks. With the external-memory algorithms,

the SAs which are too large to be accommodated in memory can be constructed now.

3. Preliminaries

Let � be an alphabet consists of a ¯nite number of character symbols. (In this paper,

we will mainly focus on the case that � is the ASCII character set, where j�j ¼ 256

An E±cient Algorithm for Su±x Sorting

1659018-3

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

and each character requires only one byte of memory.) Given the alphabet �, a string

as well as its substring over � can be de¯ned as:

De¯nition 1. A string T over � is a sequence consisting of a ¯nite number of

characters from � . Particularly, a string of length n over � is denoted by

T ¼ t0t1::tn�1 , where T ½i� ¼ ti 2 � ð0 � i � n� 1Þ . A substring of T is a sequence

consisting of any consecutive characters of T . A substring of T which starts at

position i and ends at position j is denoted by T ½i; j� .
The basic concepts in su±xes sorting are the su±xes and pre¯xes, which are

special substrings of a given string:

De¯nition 2. For a string T ¼ t0t1::tn�1 , the su±x of T that starts at position

ið0 � i � n� 1Þ is T ½i;n� 1� , which is denoted by SiðT Þ . The length-h pre¯x of T

is T ½0;h� 1� , and it is denoted by PhðT Þ .
In this paper, whenever we refer to some su±xes, they are related to the same

string, so the notation SiðT Þ can be abbreviated to Si without ambiguity. To ensure

that no su±x is a pre¯x of another su±x, a special terminal character `$' is always

appended to the rear of T , and `$' is de¯ned to be smaller than any character in �.

We use the notation Si � Sj to denote that Si is lexicographically smaller than

Sj. And our ultimate goal is to sort all the su±xes of a string in ascending lexico-

graphical order to form a su±x array:

De¯nition 3. For a string T ¼ t0t1 . . . tn�1$, the su±x array of T is an array

SA½0 . . .n� consisting of a permutation of the integers 0; 1; . . . ;n such that for all

0 � i < j � n , SSA½i� � SSA½j� , where SA½i� is the ith element of the array SA.

Since a su±x can be uniquely determined by its starting position, only the starting

position numbers of the su±xes are stored in SA.

For simplicity, the term order (of su±xes) is used to indicate the lexicographical

order unless explicitly stated. Based on the lexicographical order, we can further

de¯ne the h-order of su±xes by just comparing their ¯rst h characters: Si is said to be

h-smaller than Sj if and only if PhðSiÞ � PhðSjÞ, and this relation is denoted by

Si�hSj. The notations ¼h and ¹h can be de¯ned in a similar way. Obviously, there

is: Si�hSj) Si � Sj. If all the su±xes are sorted according to their ¯rst h char-

acters, they are called in h-order.

Next we introduce the concept of bucket which is a key concept for construction

of both qsufsort and dsufsort.

De¯nition 4. A depth-h bucket of SA is a sub-array SA½l . . . r� ðl � rÞ such that:

SSA½l�¼hSSA½lþ1� � � � ¼hSSA½r� , SSA½l�1� 6¼hSSA½l� and SSA½r� 6¼hSSA½rþ1� . The bucket

number of a bucket SA½l . . . r� is de¯ned to be l and the bucket is denoted by Bl .

Note that, h is the length of the common pre¯x of su±xes in Bl that we have

currently known. In order to record the bucket of a given su±x, an array B is used: if

B½i� ¼ j, then Si is currently in Bj. Note that, Bi is the bucket whose number is

Z. Peng et al.

1659018-4

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

i, while B½i� is the number of the bucket in which Si currently resides, and these two

similar notations can be distinguished from the context without ambiguity.

For su±xes Si and Sj, LCPðSi;SjÞ is de¯ned to be the length of the longest

common pre¯x of Si and Sj. And based on LCPðSi;SjÞ, the average LCP of a given

string can be de¯ned as follows:

De¯nition 5. Given a string T of length nþ 1 and its array SA , the average LCP

of T is de¯ned to be:

1

n

Xn�1

i¼0

LCPðSSA½i�;SSA½iþ1�Þ: ð1Þ

The average LCP is a rough measure of the di±culty of sorting the su±xes: if the

average LCP is large, we need | in principle | to examine many characters to

determine the order of two su±xes.

4. The dsufsort Algorithm

In this section, we describe our dsufsort algorithm, which is an improvement of the

qsufsort, for sorting all the su±xes of a given string. The dsufsort improves the

qsufsort by maintaining the depth for each unsorted bucket during processing. Once

an unsorted bucket is being sorted, the su±xes are sorted based on the bucket depth.

By this way, more su±xes can be completely sorted by dsufsort than by qsufsort in

each round, in other words, the dsufsort needs less rounds to completely sort all the

su±xes, which improves the performance. In the following subsections, a brief in-

troduction is given to the original qsufsort algorithm ¯rst, and then the improvement

–dsufsort is discussed in detail.

4.1. The qsufsort algorithm

Larsson and Sadakane's qsufsort algorithm uses a technique called pre¯x doubling

to sort the su±xes. It works round by round. In round 0, all the su±xes of a given

string will be sorted according to their ¯rst characters. The result is that the su±xes

starting with the same character will be arranged together to form a depth-1 bucket

in SA, and the whole SA is conceptually partitioned into a sequence of depth-1

buckets: the ¯rst bucket contains the su±xes starting with the smallest character,

the second bucket contains the su±xes starting with the second-smallest character,

and so on.

Note that, if a depth-1 bucket contains only a single su±x, the bucket as well as

the single su±x are called completely sorted ones. Because that su±x can be uniquely

distinguished from all others by its ¯rst character, and thus, it is already in its ¯nal

location in SA and will not be sorted in the future. However, if a depth-1 bucket

contains more than one su±x, the bucket as well as its su±xes are called unsorted

An E±cient Algorithm for Su±x Sorting

1659018-5

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

ones, and it is needed to check more than one character to determine the order of the

su±xes in future rounds.

After round 0, all the su±xes are sorted in 1-order. And the 1-order of any two

su±xes Si and Sj can be determined by their bucket numbers: Si¹1Sj , B½i� � B½j�,
without loss of generality.

Using the pre¯x doubling technique, the su±xes are sorted according to a doubled

number of the most-left characters after each round. As a result, after the (k� 1)th

round, all the su±xes are sorted in 2k�1 order, in other words, all the unsorted

buckets left have the same depth of 2k�1. And these unsorted buckets, will be sorted

one by one, from left to right, in the kth round.

Now, assuming an unsorted bucket Bp is being sorted in the kth round. For any Si

and Sj in Bp, since Si¼2 k�1Sj, the order of Si and Sj will depend on the order of

Siþ2k�1 and Sjþ2 k�1 , that is Si � Sj , Siþ2 k�1 � Sjþ2 k�1 , without loss of generality.

Here, Siþ2 k�1 (Sjþ2 k�1) is called the anchor su±x of Si(Sj). However, since only the

2k�1 order of Siþ2 k�1 and Sjþ2 k�1 is known now, only the 2k order of Si and Sj can be

determined: Si¹2 k Sj , Siþ2 k�1¹2 k�1Sjþ2 k�1 , B½iþ 2k�1� � B½jþ 2k�1�. This

derivation gives a way to sort the su±xes of Bp in 2k order: for any Si in the Bp, the

value B½iþ 2k�1�, which is the bucket number of Si's anchor su±x, can be used as

the key of Si:keyðSiÞ ¼ B½iþ 2k�1�, and then all the keys of the su±xes are sorted

¯rst by a common integer sorting routine, after that the su±xes in Bp can be sorted

in 2k order by being simply rearranged according to the arithmetic order of their

keys.

Once an unsorted bucket is sorted, new buckets are formed according to the

following two cases: (1) If a su±x has a unique key, it will be in its ¯nal location in SA

to form a singleton bucket which is completely sorted. (2) If some su±xes have the

same key, they will be rearranged together and form a new unsorted bucket which

will be sorted in future rounds. And the B array needs to be updated according to

these new buckets.

The qsufsort algorithm runs round by round untill there is no unsorted bucket

left. Note that, using the pre¯x doubling technique, the length of the checked pre¯x

of each su±x is doubled after each round, so for any two su±xes of the input string,

their order can be determined in at most logn rounds, where n is the length of the

input string. Therefore the qsufsort algorithm performs up to logn rounds to

completely sort all the su±xes.

4.2. The dsufsort algorithm: maintaining the depth for each unsorted

bucket

As stated above, in the kth round, the qsufsort algorithm checks only the ¯rst 2k

characters of each su±x to determine their order, which means the order of the

su±xes starting with the same 2k characters cannot be determined in the kth round.

Therefore for su±xes with a long common pre¯x, qsufsort needs several rounds to

determine their order, which will lead to a great computation cost.

Z. Peng et al.

1659018-6

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

It is necessary to reduce the computation cost by checking as many characters of

each su±x as possible to determine their order in each round. To achieve this pur-

pose, for each unsorted bucket, the dsufsort algorithm maintains its bucket depth

(length of the common pre¯x of its su±xes that we have currently know), and

updates the bucket depth once an unsorted bucket is sorted. In each round, when

sorting the su±xes in an unsorted bucket, the dsufsort uses the depth of the bucket to

compute the keys of the su±xes and then sort them. Using the keys which are

computed from the bucket depth, the su±xes of some unsorted buckets can be sorted

according to more than the most-left 2k characters in the kth round, as a result, some

of the su±xes starting with the same 2k characters can be completely sorted by

dsufsort in the k-round. Therefore, the dsufsort can sort more su±xes than the

qsufsort in each round, and it usually uses fewer sorting rounds.

In order to store the depth information, an array D is created. The depth of a

bucket can be indexed by its bucket number: for a bucket Bp, its depth is recorded in

D½p�. After round 0, we set D½p� ¼ 1 for each unsorted bucket Bp.

Similar to qsufsort, the dsufsort algorithm works round by round until there is no

unsorted bucket left. In each round, the dsufsort algorithm adopts a two phases

sorting–updating strategy to sort each unsorted bucket and update their depths. As

an example, suppose an unsorted bucket Bp is being sorted in the kth round.

1. Sorting: for any Si and Sj in Bp, since Si¼D½p�Sj, the order of Si and Sj depends

on the order of SiþD½p� and SjþD½p�: Si � Sj , SiþD½p� � SjþD½p� , B½iþD½p�� <
B½jþD½p��, without loss of generality. Here SiþD½p�(SjþD½p�) is the anchor su±x of

Si(Sj). According to this relation, for any Si in Bp, the dsufsort algorithm takes

B½iþD½p�� (rather than B½iþ 2k�1� which is used in qsufsort) as its key, and then

sorts the keys of su±xes with a common integer sorting algorithm. After that, the

su±xes in Bp are rearranged according to their keys.

After rearranging, for each su±x Si in Bp, it is sorted according to the

¯rst D½p� þD½B½iþD½p�� rather than 2k characters. We will soon see that in

the kth round(after the (k-1)th round), there must be D½p� � 2k�1 and

D½B½iþD½p�� � 2k�1, which means the su±xes are sorted according to at least the

¯rst 2k characters, thus the dsufsort can perform at least as good as qsufsort. And

we will also see that in some case, there holds D½p� > 2k�1, which means all the

su±xes in Bp are sorted according to more than 2k characters, and in this case the

dsufsort algorithm performs better than qsufsort.

2. Updating: the D and B array will be updated immediately once Bp is sorted.

Suppose the su±xes are rearranged as Si1 ;Si2 ; . . . ;Sis according to their keys

keyðSi1Þ � keyðSi2Þ � . . . � keyðSisÞ. Depending on whether or not the key of a

su±x is unique, there are two kinds of su±xes:

. For any Sij such that keyðSij�1
Þ 6¼ keyðSijÞ and keyðSijÞ 6¼ keyðSijþ1

Þ, Sij will be

in its ¯nal location in SA and forms a completely sorted singleton bucket:

Bpþj�1. The bucket of Sij is updated accordingly: B½ij� is updated to pþ j� 1.

An E±cient Algorithm for Su±x Sorting

1659018-7

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

However, there is no need to update the depth (the D array) for completely

sorted buckets.

. For each group of su±xes fSil ;Silþ1
; . . . ;Sirg such that: keyðSilÞ ¼ keyðSilþ1

Þ ¼
. . . ¼ keyðSirÞ ¼ m, keyðSil�1

Þ 6¼ m and keyðSirþ1
Þ 6¼ m, the group fSil ;Silþ1

; . . .

;Sirg will form a new unsorted bucket: Bpþl�1. Since every su±x in Bpþl�1 has

its anchor su±x in Bm, Bm is called the anchor bucket of Bpþl�1. The bucket of

each su±x in the group is updated accordingly: all of B½il�;B½ilþ1�; . . . ;B½ir� are
updated to pþ l� 1. Since we have already known that Sil¼D½p�Silþ1

¼D½p� � � �
¼D½p�Sir and SilþD½p�¼D½m�Silþ1þD½p�¼D½m� � � � ¼D½m�SrþD½p�, there holds Sil¼
D½p� þD½m�Silþ1

¼D½p�þD½m� � � � ¼D½p�þD½m�Sir . Therefore, the depth of the newly

created bucket Bpþl�1 is D½pþ l� 1� ¼ D½p� þD½m�, and we will use this for-

mula to update the depth for each newly created unsorted bucket.

Based on the two phases sorting–updating strategy, the framework of dsufsort can

be summarized as below:

Step 1. Initialization (round 0): sort all the su±xes of a given string according to

their ¯rst characters. For each unsorted bucket Bp, set D½p� ¼ 1, and for

any Si in Bp, set B½i� ¼ p.

Step 2. For each unsorted bucket (say Bp) left in SA, perform the following

sorting–updating procedure:

(i) Sorting: for each su±x Si in Bp, taking B½iþD½p�� as its key, and sort

the keys of su±xes by an integer sorting algorithm. Rearrange the

su±xes in Bp according to the arithmetic order of their keys.

(ii) Updating: suppose the su±xes in Bp are rearranged as: Si1 ;Si2 ; . . . ;Sis .

For any Sij such that: keyðSij�1
Þ 6¼ keyðSijÞ and keyðSijÞ 6¼ keyðSijþ1

Þ,
set B½ij� to pþ j� 1. For each group of su±xes fSil ;Silþ1

; . . . ;Sirg such
that keyðSilÞ ¼ keyðSilþ1

Þ ¼ . . . ¼ keyðSirÞ ¼ m, keyðSil�1
Þ 6¼ m and

keyðSirþ1
Þ 6¼ m, create a new unsorted bucket Bpþl�1 for that group.

Set D½pþ l� 1� toD½p� þD½m�, and set all of B½il�;B½ilþ1�; . . . ;B½ir� to
pþ l� 1.

Step 3. If there are no unsorted buckets left in SA, stop and quit; otherwise, go to

step 2 and start a new sorting round.

As stated before, the dsufsort algorithm has the following important feature:

Lemma 1. For any unsorted bucket Bq created in the kth round (k ¼ 0; 1; 2; . . .),

there holds: D½q� � 2k.

Proof. This can be proved by induction. Basis: for any unsorted bucketBq created in

round 0, there holds D½q� ¼ 1 � 20. Induction: suppose Bq is an unsorted bucket

created fromBp in the kth round, andBm is the anchor bucket ofBq. SinceBp andBm

are unsorted buckets created in the (k� 1)th round, by induction, there holdsD½p� �
2k�1 and D½m� � 2k�1, therefore D½q� ¼ D½p� þD½m� � 2k�1 þ 2k�1 ¼ 2k.

Z. Peng et al.

1659018-8

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

This feature ensures that the dsufsort algorithm can perform at least as good as

qsufsort. However it is necessary to explore in which case the dsufsort performs

better, specially, in which case there is D½q� > 2k. Suppose we are in the (k� 1)th

round, and sort an unsorted bucket Bp which is created in the (k� 2)th round with

D½p� ¼ 2k�2. If a new unsorted bucket Bq is created from Bp and its anchor bucket is

Bm, there is D½q� ¼ D½p� þD½m�.
The key point is that, if Bm, which is the anchor bucket of Bp, is also a new

unsorted bucket that created previously in the (k� 1)th round, due to the feature we

have just proved, there must be D½m� � 2k�1. So we have D½q� ¼ D½p� þ
D½m� � 2k�2 þ 2k�1 > 2k�1, which means the depth of Bq is strictly larger than 2k�1.

Consequently, when Bq is processed in the kth round, any Si in Bp is sorted according

to its ¯rst D½p� þD½B½iþD½p�� characters as stated before, since D½q� > 2k�1 and

D½B½iþD½p�� � 2k�1, Si is sorted according to more than 2k characters in the kth

round, which means the dsufsort algorithm performs better than qsufsort. Further-

more, if Bm is in the same case as Bq, that is, the anchor bucket of Bm is also a bucket

created in the (k� 1)-round, then there is D½m� > 2k�1. Due to the accumulation of

the depths, D½q� can be much larger than 2k�1, as a result, the su±xes in Bq can be

sorted according to much more than 2k characters in the kth round.

Example. Figure 1 shows the procedure of the dsufsort algorithm with the input

string `tobeornottobe'. To show clearly, we put Si in SA instead of its starting po-

sition i. The depth of a bucket is shown in the parentheses following the bucket. After

round 0, all the su±xes are sorted according to their ¯rst characters. Since each of

B0, B5 and B10 contains a single su±x, these three buckets are completely sorted.

In round 1, the four unsorted buckets B1, B3, B6 and B11 left from round 0 are

sorted in order. As an example, we sort B6, and the other three buckets can be sorted

Fig. 1. An example run of the dsufsort algorithm with the input string `tobeornottobe'.

An E±cient Algorithm for Su±x Sorting

1659018-9

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

in the same way. For any Si in B6, its key can be computed from the bucket depth by

keyðSiÞ ¼ B½iþD½6��. So the keys of su±xes of B6 are: keyðS1Þ ¼ B½1þD½6�� ¼ 1,

keyðS4Þ ¼ B½4þD½6�� ¼ 10, keyðS7Þ¼B½7þD½6�� ¼ 11, keyðS10Þ¼B½10þ D½6�� ¼ 1.

Then these keys are sorted by a regular integer sorting algorithm to have the

order: keyðS1Þ¼ keyðS10Þ< keyðS4Þ< keyðS7Þ. According to the arithmetic order of

their keys, the 1-order of the su±xes in B6 can be determined: S1¼1S10�1S4�1S7,

and the su±xes are rearranged accordingly. Since S1 and S10 have the same key,

they will be grouped together in a newly created unsorted bucket B6. Note that,

compared with the old B6 (denoted by Bold
6) which is being processed now, the newly

created B6 (denoted by Bnew
6) has the same bucket number (which means the bucket

numbers of S1 and S10 need not to be updated), but di®erent size and depth. The

depth of Bnew
6 isD½6�new ¼D½6�oldþD½1� ¼ 3, because B1 is the anchor bucket of B

new
6

andD½1� ¼ 2. On the other hand, S4 and S7, each of which has a unique key, will be in

completely sorted buckets B8 and B9, respectively, and only get their bucket num-

bers updated: B½4� ¼ 8, B½7� ¼ 9. After round 1, there left three unsorted buckets:

Bnew
1 , Bnew

6 , Bnew
11 .

In round 2, Bnew
1 , Bnew

6 and Bnew
11 will be sorted in order. Using D½1� ¼ 2, D½6� ¼ 3

and D½11� ¼ 4 respectively to compute the keys of su±xes and sort them in the

corresponding unsorted buckets, all these three buckets will be completely sorted in

this round, which ends the whole algorithm.

To illustrate the advantage of dsufsort over qsufsort, we examine the sorting

process of Bold
11 in round 1. Since the keys of the su±xes in Bold

11 are: keyðS0Þ ¼ 6,

keyðS9Þ ¼ 6 and keyðS8Þ ¼ 11, S8 is completed sorted in B13, while S0 and S9 will be

in unsorted bucket Bnew
11 . Since Bnew

11 is created from Bold
11 , and its anchor bucket is

Bnew
6 , the depth of Bnew

11 is D½11�new ¼ D½11�old þD½6�new. As we have seen, Bnew
6 is

also created in round 1 with D½6�new ¼ 3, so D½11�new ¼ 1þ 3 ¼ 4. Therefore, the

depth of Bnew
11 is larger than 2 which is the \depth" of all buckets computed by

qsufsort in round 1. Consequently in round 2, the su±xes contained in Bnew
11 are

sorted according to at least their ¯rst 4þ 2 characters instead of 2þ 2 characters as

in the qsufsort. The keys of su±xes are: keyðS0Þ ¼ B½0þD½11�new� ¼ 8 and

keyðS9Þ ¼ B½9þD½11�new� ¼ 13, which means B11 can be completely sorted in round

2. By contrast, in the qsufsort, the keys of su±xes in Bold
11 are keyðS0Þ ¼ B½0þ 2� ¼ 1

and keyðS9Þ ¼ B½9þ 2� ¼ 1 which means Bold
11 cannot be completely sorted after the

second round. The result is that dsufsort algorithm only needs 3 rounds to completely

sort all the su±xes, while qsufsort needs 4 rounds.

For the input string with a large average LCP, the feature of the depth accu-

mulations of dsufsort can be fully used, and the order of the su±xes with very long

common pre¯x can be determined much faster.

5. E±cient Implementation

In this section, we describe some techniques used to derive e±cient implementation

of the proposed algorithm.

Z. Peng et al.

1659018-10

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

5.1. Input transformation

In round 0, the su±xes are sorted only according to their ¯rst characters. Actually,

they can be sorted according to the ¯rst few characters by using a technique called

input transformation to the input string in advance. The input transformation

includes the following two phases:

5.1.1. Alphabet compaction

Given a text string T ¼ t0t1 . . . tn�1$ over �, suppose the characters that actually

appear in T form an ordered set C ¼ fc0; c1; . . . ; cm�1g, in which ci < cj , i < j.

Note that, the smallest terminal character `$' must be c0. Then, for each character in

T , we can replace that character by its corresponding ordinal number in C, that is:

ti 7! j , ti ¼ cj. By using this mapping, each character of T is encoded as an in-

teger, and the order of su±xes is preserved. With the alphabet compaction, � is

transformed into a smaller integer alphabet: f0; 1; . . . ;m� 1g.

5.1.2. Characters aggregation

After applying the alphabet compaction to T , we get a new alphabet of size m:

f0; 1; . . . ;m� 1g. Let k be the largest integer such that mk � 1 can be held in a

typical machine integer. Then, for each su±x of T , we can aggregate its ¯rst k

characters into one using the following formula:

T ½i� ¼
Xk
j¼1

tiþj�1 �mk�j ð0 � i � nÞ; ð2Þ

where we de¯ne ts ¼ 0, for s � n. In round 0, T ½i� is used as the key for Si, thus,

sorting is based on not only the ¯rst character of each su±x, but also the ¯rst k

characters. The subsequent rounds of sorting can start with bucket depth k instead of

1, and the number of rounds will be reduced. Formula (2) can be computed in linear

time through an alternate form:

T ½i� ¼
Xk
j¼1

ðtj�1 �mk�jÞ; i ¼ 0;

ðT ½i� 1� mod mk�1Þ �mþ ti�1þk; 0 < i � n;

8>><
>>:

ð3Þ

where ts ¼ 0, for s � n. The multiplication and modulo operations can be replaced

by faster bitwise operations shift and and.

Note that, since the alphabet of T may not be consecutive after characters

aggregation, we need to use alphabet compaction again to the new aggregated

string T .

5.2. Initial bucket sorting

The round 0 (initialization) of the algorithm is quite independent to the rest of the

algorithm and is not required to use the same sorting method as the following rounds.

An E±cient Algorithm for Su±x Sorting

1659018-11

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Since this step must process all of the su±xes in a single round, a substantial im-

provement can be gained by using a linear time bucket sorting algorithm instead of a

comparison-based algorithm that requires OðnlognÞ time.

A reasonable improvement can be gained by combining bucket sorting with input

transformation as described above. Given a string T ¼ t0t1 . . . tn�1$, suppose the new

alphabet after applying input transformation to T is I ¼ f0; 1; . . . ;m� 1g. For each
integer i in I, its number of occurrences in T is counted and an array F of size m is

used to record that number. In particular, if integer i occurs j times in T , then

F ½i� ¼ j, and based on this de¯nition, there is
Pm�1

i¼0 F ½i� ¼ nþ 1. To conclude, the

round 0 of the dsufsort algorithm using bucket sorting includes the following four

steps:

1. Initialize F : 8i 2 I, set F ½i� ¼ 0.

2. Scan T forwards to compute the occurrence frequency of its symbols: for

i ¼ 0; . . . ;n, increment F ½T ½i�� by 1.

3. Traverse F forwards, and sum adjacent elements so as to form cumulative fre-

quency counts: for i ¼ 1; . . . ;m� 1, set F ½i� ¼ F ½i� þ F ½i� 1�.
4. Scan T backwards to put each of its su±x in the proper bucket: for

i ¼ n;n� 1; . . . ; 0, decrement F ½T ½i�� by 1, and set SA½F ½T ½i��� ¼ i.

After round 0, SA is partitioned into m (completely sorted or unsorted) buckets,

and all su±xes in an unsorted bucket start with the same k characters. In essence,

the term bucket in the bucket sort here is exactly the depth-k bucket de¯ned by

De¯nition 5 in the Preliminaries.

5.3. Choosing an integer sorting subroutine

Both of the qsufsort and the dsufsort algorithm need an integer sorting subroutine to

sort the keys, thus, this subsidiary subroutine may have a great e®ect on the per-

formance of the whole algorithms. The sorting subroutine used in this paper is called

split-end partitioning which is proposed by Bentley and Mcllroy.1 It is a variant of

the well-known Quicksort,5 but uses a ternary-split partition strategy.

The classical Quicksort which uses a binary-split partition strategy recursively

partitions an array into two parts, one with smaller elements than a pivot element

and one with larger elements. Then the parts are processed recursively until the

whole array is sorted. The Quicksortmixes the elements being equal to the pivot into

one or both of the parts depending on the implementation. However, the split-end

partitioning algorithm which uses a ternary-split partition strategy generates three

parts: one with elements smaller than the pivot, one with elements equal to the pivot,

and one with elements larger than the pivot. The smaller and larger parts are then

processed recursively while the equal part is remained, since its elements are already

correctly placed.

The implementation of split-end partitioning in our algorithm is based on Pro-

gram 7 of Bentley and Mcllroy1 with one exception: for fast handling of small

Z. Peng et al.

1659018-12

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

buckets, a variant of selection sort which is nonrecursive is used to sort buckets with

less than seven elements.

6. Experimental Results

We compared the dsufsort algorithm to three well-known algorithms, i.e. the original

qsufsort algorithm,13 the DC322 algorithm, and the KS algorithm.9 Our dsufsort

algorithm is an improvement of qsufsort algorithm. The DC32 is the di®erence-

cover algorithm with di®erence-cover modulo 32. The KS algorithm is one of the

fastest su±xes sorting algorithms of a worst-case linear time complexity. We eval-

uated the performance of these algorithms for real world data and for degenerated

data: arti¯cial strings with very high average LCP.

The experiments were performed on a notebook running Ubuntu 14.04-64bit

operating system with the following con¯guration: Intel Core i7-2630QM 2.00GHz

processor, 8GB 1333Mhz DDR3 SDRAM, 500GB SATA disk. All the programs were

implemented in C/C++, and compiled by gcc 4.8.2 with °ags\–O3". To ensure the

correctness of the testing algorithms, all the sorting results are checked by a su±x

array checker which is described in Burkhardt.2

The real world data set we used in the experiment is the Pizza Chili Corpus6

which contains six kinds of data: source code, pitch values, protein sequence, DNA

sequence, English text and XML ¯les. The characteristic of the data set is shown in

Table 1 which shows the size, the average and maximum LCP lengthes for each ¯le.

The average/maximum LCP for a string is the average/maximum ones for all pairs

of adjacent su±xes in the su±x array. The maximum LCP length is equivalent to the

length of the longest repeated substring. These values give a good estimate of the

repetitiveness of the data.

Table 2 shows the mean sorting time of each testing algorithm based on 10

independent runs, in which the best run times among all compared algorithms are

shown in bold. We also use arti¯cial repetitive ¯les to test the robustness of the

testing algorithms. The ¯rst two ¯les contain solely the letter a and the pair ab,

respectively, and the following three ¯les that have the form `rand-k-rep' are gen-

erated by a single random seed string of length k which is repeated until 100MB

characters are reached.

Table 1. Data sets used in the experiment.

Files Description Size(bytes) jj�jj Average LCP Max LCP

Proteins Protein sequence 66,804,271 24 33.46 6380

XML XML ¯les 294,724,056 97 44.91 1084

Pitches MIDI pitch values 55,832,855 133 262.00 25,178
Sources C/Java source code 210,866,607 230 371.80 307,871

DNA DNA sequence 403,927,746 16 2420.73 1,378,596

English English text 2,210,395,553 235 6675.35 987,770

An E±cient Algorithm for Su±x Sorting

1659018-13

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

From the results, we can see that, for real world data, the dsufsort and the qsufsort

perform best, and the dsufsort performs better than qsufsort on most real world data.

Only for Proteins and XML ¯les which have very low average LCP, dsufsort performs

a little bit worse than qsufsort. The reason is that, compared with qsufsort, the

dsufsort needs to read and update the D array during the processing, and these

operations require additional random memory accesses which will lead to additional

cache misses. So the time cost will be over the one we saved from the depth accu-

mulation which is not very e®ective for strings with very low average LCP.

For arti¯cial data whose average LCP is relatively high, the dsufsort can dra-

matically reduce the time for sorting su±xes with long LCP. The results in Table 2

also show that dsufsort dominates others except for KS on one ¯le (rand-20-rep)

where the liner time algorithm KS is faster. This is because the performance of linear

time algorithm is not severely a®ected by the characteristic of input data. However,

the KS algorithm performs not well for ordinary data, and this limits its application

in practice.

In summary, we can draw the conclusion that dsufsort algorithm outperforms the

others in most cases. Only for case with very low average LCP, dsufsort algorithm

does not outperform qsufsort, and for case with very high average LCP, it does not

outperform KS algorithm sometimes.

7. Conclusions and Future Work

In this paper, an e±cient su±xes sorting algorithm, i.e. dsufsort, is proposed, which is

based on the framework of qsufsort. Unlike the qsufsort sort su±xes according to a

¯xed number of characters in each round, dsufsort maintains the depth for each

unsorted bucket, and sort the bucket based its depth, furthermore, the accumulation

of depths during processing makes dsufsort very e±cient, especially for strings with

large average LCP.

There are two problems left for further research: Firstly, in our implementation,

the unsorted buckets are simply processed one by one from left to right. However, the

Table 2. Sorting times in seconds.

Files Size Dsufsort Qsufsort DC32 KS

Proteins 100MB 25.34 24.11 35.43 98.91
XML 100MB 27.59 26.75 49.54 67.39

Pitches 50MB 9.27 10.52 12.42 32.83

Sources 100MB 23.81 25.64 33.03 83.03

DNA 100MB 26.02 28.90 38.15 85.44
English 100MB 41.72 44.35 48.20 97.12

aaa… 100MB 9.14 10.65 73.32 11.87

abab… 100MB 8.82 11.55 30.23 9.56
rand-5-rep 100MB 10.36 16.32 35.60 12.77

rand-10-rep 100MB 16.73 24.28 33.57 17.53

rand-20-rep 100MB 23.11 39.03 35.92 22.85

Z. Peng et al.

1659018-14

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

order in which the buckets are processed can have an e®ect on the performance of

algorithm, so what is the best order from which the buckets should be processed?

Secondly, the D array used to record the depth information may be very sparse,

which leads to unnecessary excessive memory consumption. How to compact the D

array to reduce the space complexity?

Acknowledgments

This work is supported by National Natural Science Foundation of China

(No. 61472297, No. 61203372 and No. U1404622).

References

1. J. L. Bentley and M. D. Mcllroy, Engineering a sort function, Softw. Pract. Exp. 23
(1993) 1249–1265.

2. S. Burkhardt and J. Karkkainen, Fast lightweight su±x array construction and checking,
in Proc. 14th Ann. Symp. Combinatorial Pattern Matching, Morelia, Michoacan, Mexico,
June 2003, pp. 55–69.

3. J. Dhaliwal, S. J. Puglisi and A. Turpin, Trends in su±x sorting: A survey of low memory
algorithms, in Proc. 12nd. Australasian Computer Science Conf., Darlinghurst, Australia
(2012), pp. 91–98.

4. M. Farach, Optimal su±x tree construction with large alphabets, in Proc. 38th Ann.
Symp. Foundations of Computer Science, Miami Beach, FL, October 1997, pp. 137–143.

5. C. A. R. Hoare, Quickfort, Comput. J. 5 (1962) 10–15.
6. http://pizzachil.dcc.uchile.cl/.
7. H. Itoh and H. Tanaka, An e±cient method for in memory construction of su±x arrays,

in Proc. 2nd. Ann. Symp. String Processing and Information Retrieval Sym Int. Work-
shop on Groupware Cancun, Mexico, September 1999, pp. 34–42.

8. J. Karkkainen and D. Kempa, Engineering a lightweight external memory su±x array
construction algorithm, in Proc. 2nd. Int. Conf. Algorithms for Big Data, Palermo, Italy,
April 2014, pp. 7–9.

9. J. Karkkainen, P. Sanders and S. Burkhardt, Linear work su±x array construction,
J. ACM 53 (2006) 918–936.

10. R. M. Karp, R. E. Miller and A. L. Rosenberg, Rapid identi¯cation of repeated patterns in
strings, trees and arrays, in Proc. 4th Ann. Theory of Computing (ACM Press, New York,
1972), pp. 125–136.

11. D. K. Kim, I. S. Sim, H. Park and K. Park, Consructing su±x arrays in linear time,
J. Discrete Algorithms 3 (2005) 126–142.

12. P. Ko and S. Aluru, Space e±cient linear time construction of su±x arrays, J. Discrete
Algoritms 3 (2005) 143–156.

13. N. Larsson and K. Sadakane, Faster su±x sorting, Theor. Comput. Sci. 387 (2007)
258–272.

14. U. Manber and G. Myers, Su±x arrays: A new method for on-line string searches, SIAM
J. Comput. 22 (1993) 935–948.

15. G. Manzini and P. Ferragina, Engineering a lightweight su±x array construction algo-
rithm, Algorithmica 40 (2004) 33–50.

16. G. Nong, Practical linear-time O(1)-workspace su±x sorting for constant alphabets,
ACM Trans. Inf Syst 31 (2013) 15:1–15:15.

An E±cient Algorithm for Su±x Sorting

1659018-15

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

17. G. Nong, W. H. Chan, S. Q. Hu and Y. Wu, Induced sorting su±xes in external memory,
ACM Trans. Inf. Syst. 33 (2015) 12:1–12:15.

18. G. Nong, W. H. Chan, S. Zhang and X. F. Guan, Su±x array construction in external
memory using D-critical substrings, ACM Trans. Inf. Syst. 32 (2014) 1:1–1:15.

19. G. Nong, S. Zhang and W. H. Chan, Two e±cient algorithms for linear time su±x array
construction, IEEE Trans. Comput. 60 (2011) 1471–1484.

20. S. J. Puglisi, W. F. Smyth and A. H. Turpin, A taxonomy of su±x array construction
algorithms, ACM Comput. Surv. 39 (2007) 1–31.

21. S. Rajasekaran and M. Nicolae, An elegant algorithm for the construction of su±x arrays,
J. Discrete Algorithms 27 (2014) 21–28.

22. K.-B. Schurmann and J. Stoye, An incomplex algorithm for fast su±x array construction,
Softw. Pract. Exp. 37 (2007) 309–329.

23. J. Seward, On the performance of BWT sorting algorithms, DCC: Data Compression
Conf. (IEEE Computer Society Press, Los Alamitos, CA, 2000), pp. 173–182.

Zhan Peng is currently a
Ph.D. candidate at
Xidian University,
majoring in Computer
Science and Technology.
He received his B.S. de-
gree in Software Engi-
neering from Xidian
University in 2008 and his
M.S. degree in Computer
Science and Technology

from Xidian University in 2011. His research
interests include string pattern matching and
text indexing.

Yuping Wang is a Pro-
fessor with the School of
Computer Science and
Technology, Xidian Uni-
versity, Xi'an, China. He
received his Ph.D. from
the Department of Math-
ematics, Xi'an Jiaotong
University, China in 1993.
He is a Senior member of
IEEE, and visited Chinese

University of Hong Kong, City University of
Hong Kong, and Hong Kong Baptist University
as a research fellow many times from 1997 to
2010. He has authored or co-authored over 100
research papers in journals and conferences. His
current research interests include evolutionary
computation, optimization methods, data min-
ing and scheduling, etc.

Xingsi Xue is a Lecturer
with the School of Infor-
mation Science and Engi-
neering, Fujian University
of Technology, Fuzhou,
Fujian, China. Currently,
his research interests in-
clude intelligent computa-
tion, ontology matching
technology and intelligent
decision supporting system.

Jingxuan Wei is an As-
sociate Professor with the
School of Computer Sci-
ence and Technology,
Xidian University, Xi'an,
China. She received her
B.S. degree in Applied
Mathematics from Shanxi
Normal University in
2003. She received her
M.S. and Ph.D. degrees in

Applied Mathematics from Xidian University in
2006 and 2009, respectively. Her research inter-
ests include computational intelligence, evolu-
tionary computation and particle swarm
optimization, etc.

Z. Peng et al.

1659018-16

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

16
.3

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

06
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

	An Efficient Algorithm for Suffix Sorting
	1. Introduction
	2. Related Work
	3. Preliminaries
	4. The dsufsort Algorithm
	4.1. The qsufsort algorithm
	4.2. The dsufsort algorithm: maintaining the depth for each unsorted bucket

	5. Efficient Implementation
	5.1. Input transformation
	5.1.1. Alphabet compaction
	5.1.2. Characters aggregation

	5.2. Initial bucket sorting
	5.3. Choosing an integer sorting subroutine

	6. Experimental Results
	7. Conclusions and Future Work
	Acknowledgments
	References

