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About this Book 
This book is for the reader who wants to understand how data 
compression works, or who wants to write data compression 
software. Prior programming ability and some math skills will 
be needed. Specific topics include:  

 Information theory: entropy and algorithmic complexity, and 
the relationship to artificial intelligence.  

 Benchmarks.  

 Coding: Huffman, arithmetic, asymmetric binary.  

 Modeling: fixed order, variable order (PPM), context mixing 
(PAQ). Static vs. dynamic.  

 Transforms: run length, string matching (LZ77), dictionary 
(LZW), context sorting (BWT), symbol ranking, predictive 
filters, E8E9, recompression.  

 Lossy compression for images (JPEG), video (MPEG), and 
audio (MP3).  

This book is intended to be self contained. Sources are linked 
when appropriate, but you don't need to click on them to 
understand the material.  

 
1. Information Theory 
Data compression is the art of reducing the number of bits 
needed to store or transmit data. Compression can be either 
lossless or lossy. Losslessly compressed data can be 
decompressed to exactly its original value. An example is 1848 
Morse Code. Each letter of the alphabet is coded as a 
sequence of dots and dashes. The most common letters in 
English like E and T receive the shortest codes. The least 
common like J, Q, X, and Z are assigned the longest codes.  
All data compression algorithms consist of at least a model 
and a coder (with optional preprocesing transforms). A model 
estimates the probability distribution (E is more common than 
Z). The coder assigns shorter codes to the more likely 
symbols. There are efficient and optimal solutions to the coding 
problem. However, optimal modeling has been proven not 
computable. Modeling (or equivalently, prediction) is both an 
artificial intelligence (AI) problem and an art.  
Lossy compression discards "unimportant" data, for example, 
details of an image or audio clip that are not perceptible to the 
eye or ear. An example is the 1953 NTSC standard for 
broadcast color TV, used until 2009. The human eye is less 
sensitive to fine detail between colors of equal brightness (like 
red and green) than it is to brightness (black and white). Thus, 
the color signal is transmitted with less resolution over a 
narrower frequency band than the monochrome signal.  
Lossy compression consists of a transform to separate 
important from unimportant data, followed by lossless 
compression of the important part and discarding the rest. The 
transform is an AI problem because it requires understanding 
what the human brain can and cannot perceive.  
Information theory places hard limits on what can and cannot 
be compressed losslessly, and by how much:  

1. There is no such thing as a "universal" compression 
algorithm that is guaranteed to compress any input, or even 
any input above a certain size. In particular, it is not possible 
to compress random data or compress recursively.  

2. Given a model (probability distribution) of your input data, 
the best you can do is code symbols with probability p using 
log2 1/p bits. Efficient and optimal codes are known.  
3. Data has a universal but uncomputable probability 
distribution. There is no general procedure for finding good 
models. There is no algorithm that tests for randomness or 
tells you whether a string can be compressed any further.  

 
1.1. No Universal Compression 
This is proved by the counting argument. Suppose there were 
a compression algorithm that could compress all strings of at 
least a certain size, say, n bits. There are exactly 2

n
 different 

binary strings of length n. A universal compressor would have 
to encode each input differently. Otherwise, if two inputs 
compressed to the same output, then the decompresser would 
not be able to decompress that output correctly. However there 
are only 2

n
 - 1 binary strings shorter than n bits.  

In fact, the vast majority of strings cannot be compressed by 
very much. The fraction of strings that can be compressed from 
n bits to m bits is 2

m - n
. For example, less than 0.4% of strings 

can be compressed by one byte.  
Every compressor that can compress any input must also 
expand some of its input. However, the expansion never needs 
to be more than one symbol. Any compression algorithm can 
be modified by adding one bit to indicate that the rest of the 
data is stored uncompressed.  
The counting argument applies to systems that would 
recursively compress their own output. In general, compressed 
data appears random to the algorithm that compressed it so 
that it cannot be compressed again.  

 
1.2. Coding is Bounded 
Suppose we wish to compress the digits of Ï€, e.g. 
"314159265358979323846264...". Assume our model is that 
each digit occurs with probability 0.1, independent of any other 
digits. Consider 3 possible binary codes:  
 
Digit BCD   Huffman Binary 

----  ----   ----   ---- 

  0   0000   000    0 

  1   0001   001    1 

  2   0010   010    10 

  3   0011   011    11 

  4   0100   100    100 

  5   0101   101    101 

  6   0110   1100   110 

  7   0111   1101   111 

  8   1000   1110   1000 

  9   1001   1111   1001 

---   ----   ----   ---- 

bpc   4.0    3.4    not valid 

 

Using a BCD (binary coded decimal) code, Ï€ would be 
encoded as 0011 0001 0100 0001 0101... (Spaces are shown 
for readability only). The compression ratio is 4 bits per 
character (4 bpc). If the input was ASCII text, the output would 
be compressed 50%. The decompresser would decode the 
data by dividing it into 4 bit strings.  
The Huffman code would code Ï€ as 011 001 100 001 101 
1111... The decoder would read bits one at a time and decode 
a digit as soon as it found a match in the table (after either 3 or 
4 bits). The code is uniquely decodable because no code is a 
prefix of any other code. The compression ratio is 3.4 bpc.  
The binary code is not uniquely decodable. For example, 111 
could be decoded as 7 or 31 or 13 or 111.  
There are better codes than the Huffman code given above. 
For example, we could assign Huffman codes to pairs of digits. 
There are 100 pairs each with probability 0.01. We could 
assign 6 bit codes (000000 through 011011) to 00 through 27, 
and 7 bits (0111000 through 1111111) to 28 through 99. The 
average code length is 6.72 bits per pair of digits, or 3.36 bpc. 
Similarly, coding groups of 3 digits using 9 or 10 bits would 
yield 3.3253 bpc.  
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Shannon and Weaver (1949) proved that the best you can do 
for a symbol with probability p is assign a code of length log2 
1/p. In this example, log2 1/0.1 = 3.3219 bpc.  
Shannon defined the information content or equivocation (now 
called entropy) of a random variable X as its expected code 
length. Suppose X may have values X1, X2,... and that each Xi 
has probability p(i). Then the entropy of X is H(X) = E[log2 
1/p(X)] = Î£i p(i) log2 1/p(i). For example, the entropy of the 
digits of Ï€, according to our model, is 10 (0.1 log2 1/0.1) = 
3.3219 bpc. There is no smaller code for this model that could 
be decoded unambiguously.  
The information content of a set of strings is at most the sum 
of the information content of the individual strings. If X and Y 
are strings, then H(X,Y) â‰¤ H(X) + H(Y). If they are equal, 
then X and Y are independent. Knowing one string would tell 
you nothing about the other.  
The conditional entropy H(X|Y) = H(X,Y) - H(Y) is the 
information content of X given Y. If X and Y are independent, 
then H(X|Y) = H(X).  
If X is a string of symbols x1x2...xn, then by the chain rule, p(X) 
may be expressed as a product of the sequence of symbol 
predictions conditioned on previous symbols: p(X) = Î i p(xi|x1..i-

1). Likewise, the information content H(X) of random string X is 
the sum of the conditional entropies of each symbol given the 
previous symbols: H(X) = Î£i H(xi|x1..i-1).  
Entropy is both a measure of uncertainty and a lower bound on 
compression. The entropy of a string is the limit to which you 
can compress it. There are efficient coding methods, such as 
arithmetic codes, which are for all practical purposes optimal in 
this sense. It should be emphasized, however, that entropy can 
only be calculated for a known probability distribution. But in 
general, the model is not known.  

 
1.3. Modeling is Not Computable 
We modeled the digits of Ï€ as uniformly distributed and 
independent. Given that model, Shannon's coding theorem 
places a hard limit on the best compression that could be 
achieved. However, it is possible to use a better model. The 
digits of Ï€ are not really random. The digits are only unknown 
until you compute them. An intelligent compressor might 
recognize the digits of Ï€ and encode it as a description 
meaning "the first million digits of pi", or as a program that 
reconstructs the data when run. With our previous model, the 
best we could do is (10

6
 log2 10)/8 â‰ˆ 415,241 bytes. Yet, 

there are very small programs that can output Ï€, some as 
small as 52 bytes.  
The counting argument says that most strings are not 
compressible. So it is a rather remarkable fact that most strings 
that we care about, for example English text, images, software, 
sensor readings, and DNA, are in fact compressible. These 
strings generally have short descriptions, whether they are 
described in English or as a program in C or x86 machine 
code.  
Solomonoff (1960, 1964), Kolmogorov (1965), and Chaitin 
(1966) independently proposed a universal a-priori probability 
distribution over strings based on their minimum description 
length. The algorithmic probability KL(x) of a string x is defined 
as the fraction of random programs in some language L that 
output x, where each program M is weighted by 2

-|M|
 and |M| is 

the length of M in bits. This probability is dominated by the 
shortest such program.  
Algorithmic probability and complexity of a string x depend on 
the choice of language L, but only by a constant that is 
independent of x. Suppose that y1 and y2 are encodings of x in 
languages L1 and L2 respectively, i. e. L1(y1) = L2(y2) = x. 
Any string y1 can be encoded in L2 by writing a compiler or 
interpreter for L1 in L2 and appending it to y1. The size of this 
compiler depends on L1 and L2 but not on x.  
It is not proven that algorithmic probability is a true universal 
prior probability. Nevertheless it is widely accepted on 
empirical grounds because of its success in sequence 

prediction and machine learning over a wide range of data 
types. It represents a formalization of Occam's Razor. Occam 
noted in the 14'th century, that (paraphrasing) "the simplest 
answer is usually the correct answer". Occam's Razor is 
universally applied in all of the sciences because we know from 
experience that the simplest (shortest) theory that explains the 
data tends to be the best predictor of future experiments.  
To summarize, the best compression we can achieve for any 
string x is to encode it as the shortest program M in some 
language L that outputs x. Furthermore, the choice of L 
becomes less important as the strings get longer. All that 
remains is to find a procedure that finds M for any x in some 
language L. However, Kolmogorov proved that there is no such 
procedure in any language. Suppose there were. Then it would 
be possible to describe "the first string that cannot be 
described in less than a million bits" leading to the paradox that 
we had just done so. (By "first", assume an ordering over 
strings from shortest to longest, breaking ties 
lexicographically).  
Because optimal modeling is not computable, neither is 
optimal compression. It is not hard to find difficult cases. For 
example, consider the short description "a string of a million 
zero bytes compressed with AES in CBC mode with key 'foo'". 
To any program that does not know the key, the data looks 
completely random and incompressible.  

 
1.4. Compression is an Artificial Intelligence Problem 
Optimal compression, if it were computable, would optimally 
solve the artificial intelligence (AI) problem under two vastly 
different definitions of "intelligence": the Turing test (Turing, 
1950), and universal intelligence (Legg and Hutter, 2006).  
Turing first proposed a test for AI to sidestep the 
philosophically difficult question (which he considered 
irrelevant) of whether machines could think. This test, now 
known as the Turing test, is now widely accepted. The test is a 
game played by two humans who have not previously met and 
the machine under test. One human (the judge) communicates 
with the other human (the confederate) and the machine 
through a terminal. Both the confederate and the machine try 
to convince the judge that each is human. If the judge cannot 
guess correctly which is the machine 70% of the time after 10 
minutes of interaction, then the machine is said to have AI. 
Turing gave the following example of a possible dialogue:  
 
Q: Please write me a sonnet on the subject of the Forth 
Bridge. 
A: Count me out on this one. I never could write poetry. 
Q: Add 34957 to 70764. 
A: (Pause about 30 seconds and then give as answer) 
105621. 
Q: Do you play chess? 
A: Yes. 
Q: I have K at my K1, and no other pieces. You have only K 
at K6 and R at R1. It is your move. What do you play?  
A: (After a pause of 15 seconds) R-R8 mate. 
 

It should be evident that compressing transcripts like this 
requires the ability to compute a model of the form p(A|Q) = 
p(QA)/P(Q) where Q is the context up to the current question, 
and A is the response. But if a model could make such 
predictions accurately, then it could also generate responses 
indistinguishable from that of a human.  
Predicting transcripts is a similar problem to predicting ordinary 
written language. It requires in either case vast, real-world 
knowledge. Shannon (1950) estimated that the information 
content of written case-insensitive English without punctuation 
is 0.6 to 1.3 bits per character, based on experiments in which 
human subjects guessed successive characters in text with the 
help of letter n-gram frequency tables and dictionaries. The 
uncertainty is due not so much to variation in subject matter 
and human skill as it is due to the fact that different probability 
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assignments lead to the same observed guessing sequences. 
Nevertheless, the best text compressors are only now 
compressing near the upper end of this range.  
Legg and Hutter proposed the second definition, universal 
intelligence, to be far more general than Turing's human 
intelligence. They consider the problem of reward-seeking 
agents in completely arbitrary environments described by 
random programs. In this model, an agent communicates with 
an environment by sending and receiving symbols. The 
environment also sends a reinforcement or reward signal to the 
agent. The goal of the agent is to maximize accumulated 
reward. Universal intelligence is defined as the expected 
reward over all possible environments, where the probability of 
each environment described by a program M is algorithmic, 
proportional to 2

-|M|
. Hutter (2004, 2007) proved that the optimal 

(but not computable) strategy for the agent is to guess after 
each input that M is the shortest program consistent with past 
observation.  
Hutter calls this strategy AIXI. It is, of course, is just our 
uncomputable compression problem applied to a transcript of 
past interaction. AIXI may also be considered a formal 
statement and proof of Occam's Razor. The best predictor of 
the future is the simplest or shortest theory that explains the 
past.  

 
1.5. Summary 
There is no such thing as universal compression, recursive 
compression, or compression of random data.  
Most strings are random. Most meaningful strings are not.  
Given a probability distribution or prediction model, coding is a 
solved problem.  
Prediction is not computable. There is no test to prove 
randomness or a lower bound on information content.  
Prediction is an art and an artificial intelligence problem.  
Compression measures prediction accuracy.  

 
2. Benchmarks 
A data compression benchmark measures compression ratio 
over a data set, and sometimes memory usage and speed on a 
particular computer. Some benchmarks evaluate size only, in 
order to avoid hardware dependencies. Compression ratio is 
often measured by the size of the compressed output file, or in 
bits per character (bpc) meaning compressed bits per 
uncompressed byte. In either case, smaller numbers are 
better. 8 bpc means no compression.  
Generally there is a 3 way trade off between size, speed, and 
memory usage. The top ranked compressors by size require a 
lot of computing resources.  

 
2.1. Calgary Corpus 
The Calgary corpus is the oldest compression benchmark still 
in use. It was created in 1987 and described in a survey of text 
compression models in 1989 (Bell, Witten and Cleary, 1989). It 
consists of 14 files with a total size of 3,141,622 bytes as 
follows:  
 

  111,261 BIB    - ASCII text in UNIX "refer" format - 725 

bibliographic references. 

  768,771 BOOK1  - unformatted ASCII text - Thomas Hardy: 

Far from the Madding Crowd. 

  610,856 BOOK2  - ASCII text in UNIX "troff" format - 

Witten: Principles of Computer Speech. 

  102,400 GEO    - 32 bit numbers in IBM floating point 

format - seismic data. 

  377,109 NEWS   - ASCII text - USENET batch file on a 

variety of topics. 

   21,504 OBJ1   - VAX executable program - compilation of 

PROGP. 

  246,814 OBJ2   - Macintosh executable program - 

"Knowledge Support System". 

   53,161 PAPER1 - UNIX "troff" format - Witten, Neal, 

Cleary: Arithmetic Coding for Data Compression. 

   82,199 PAPER2 - UNIX "troff" format - Witten: Computer 

(in)security. 

  513,216 PIC    - 1728 x 2376 bitmap image (MSB first): 

text in French and a line graph. 

   39,611 PROGC  - Source code in C - UNIX compress v4.0. 

   71,646 PROGL  - Source code in Lisp - system software. 

   49,379 PROGP  - Source code in Pascal - program to 

evaluate PPM compression. 

   93,695 TRANS  - ASCII and control characters - 

transcript of a terminal session. 

 
Early tests sometimes used an 18 file version of the corpus 
that included 4 addtional papers (PAPER3 through PAPER6). 
Programs were often ranked by measuring bits per character 
(bpc) on each file separately and reporting them individually or 
taking the average. Simply adding the compressed sizes is 
called a "weighted average" since it is weighted toward the 
larger files.  
The Calgary corpus is no longer widely used due to its small 
size. However, it has been used since 1996 in an ongoing 
compression challenge run by Leonid A. Broukhis with small 
cash prizes. The best compression ratios established as of 
Feb. 2010 are as follows.  
Table. Calgary Compression Challenge History  
 

   Size     Date        Name 

  ------   -------   -------------------- 

  759,881  Sep 1997  Malcolm Taylor 

  692,154  Aug 2001  Maxim Smirnov 

  680,558  Sep 2001  Maxim Smirnov 

  653,720  Nov 2002  Serge Voskoboynikov 

  645,667  Jan 2004  Matt Mahoney 

  637,116  Apr 2004  Alexander Ratushnyak 

  608,980  Dec 2004  Alexander Ratushnyak 

  603,416  Apr 2005  Przemyslaw Skibinski 

  596,314  Oct 2005  Alexander Ratushnyak 

  593,620  Dec 2005  Alexander Ratushnyak 

  589,863  May 2006  Alexander Ratushnyak 

 
The rules of the Calgary challenge specify that the 
compressed size include the size of the decompression 
program, either as a Windows or Linux executable file or as 
source code. This is to avoid programs that cheat by hiding 
information from the corpus in the decompression program. 
Furthermore, the program and compressed files must either be 
packed in an archive (in one of several specified formats), or 
else 4 bytes plus the length of each file name is added. This is 
to prevent cheating by hiding information in the file names and 
sizes. Without such precautions, programs like barf could claim 
to compress to zero bytes.  
Submissions prior to 2004 are custom variants of compressors 
by the authors based on PPM algorithms (rk for Taylor, slim for 
Voskoboynikov, ppmn for Smirnov). Subsequent submissions 
are variants of the open source paq6, a context mixing 
algorithm. For comparison, zip -9 (InfoZIP 2.32., option -9 for 
best compression) compresses the Calgary corpus to 
1,020,495 bytes, not including the size of the unzip program.  

 
2.2. Large Text Compression Benchmark 
The Large Text Compression Benchmark consists of a single 
Unicode encoded XML file containing a dump of Wikipedia text 
from Mar. 3, 2006, truncated to 10

9
 bytes. Its stated goal is to 

encourage research into artificial intelligence, specifically, 
natural language processing. As of Feb. 2010, 128 different 
programs (889 including different versions and options) were 
evaluated for compressed size (including the decompression 
program source or executable and any other needed files as a 
zip archive), speed, and memory usage. The benchmark is 
open, meaning that anyone can submit results.  
Programs are ranked by compressed size with options 
selecting maximum compression where applicable. The best 
result obtained is 127,784,888 bytes by D. Shkarin for a 
customized version of durilca using 13 GB memory. It took 
1398 seconds to compress and 1797 seconds to decompress 
using a size-optimized decompression program on a 3.8 GHz 
quad core Q9650 with 16 GB memory under 64 bit Windows 
XP Pro on July 21, 2009. The data was preprocessed with a 
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custom dictionary built from the benchmark and encoded with 
order 40 PPM. durilca is a modified version of ppmonstr by the 
same author. ppmonstr is in turn a slower but better 
compressing ppmd program which is used for maximum 
compression in several archivers such as rar, WinZip, 7zip, 
and freearc.  
By comparison, zip -9 compresses to 322,649,703 bytes in 
104 seconds and decompresses in 35 seconds using 0.1 MB 
memory. It is ranked 92'nd.  

The benchmark shows a 3 way trade off between compressed 
size, speed, and memory usage. The two graphs below show 
the Pareto frontier, those compressors for which no other 
compressors both compress smaller and faster (or smaller and 
use less memory). The graphs are from Aug. 2008, but the 
current data shows a similar trend. In particular, no single 
algorithm (shown in parenthesis) is the "best".  

 
Pareto frontier: compressed size vs. compression time as of Aug. 18, 2008 (options for maximum compression).  

 
Pareto frontier: compressed size vs. memory as of Aug. 18, 2008 (options for maximum compression).  

 
Note that speed tests may be run on different machines, and that only the options for maximum compression for each program 
are used. Nevertheless, the general trend remains valid. Individual compressors often have options that allow the user to make 
the same 3 way trade off.  

 



2.3. Hutter Prize 
The Hutter prize is based on the first 10

8
 bytes (the file enwik8) 

of the Large Text Compression benchmark with similar rules 
and goals. It is a contest in which prize money (500 euros per 
1% gain) is awarded for improvements of 3% or more over the 
previous submission, subject to time and memory limits on the 
test computer. The best result is 15,949,688 bytes for an 
archive and a decompresser submitted by A. Ratushnyak on 
May 23, 2009. It requires 7608 seconds and 936 MB memory 
to decompress on a 2 GHz dual core T3200 under 32 bit 
Windows Vista. The submission is based on two open source, 
context mixing programs paq8hp12 and lpaq9m with a custom 
dictionary for preprocessing.  
By comparison, zip -9 compresses the same data to 
36,445,373 bytes and uncompresses in 3.5 seconds using 0.1 
MB memory.  
 

2.4. Maximum Compression 
The maximum compression benchmark has two parts: a set of 
10 public files totaling 53 MB, and a private collection of 510 
files totaling 301 MB. In the public data set (SFC or single file 
compression), each file is compressed separately and the 
sizes added. Programs are ranked by size only, with options 
set for best compression individually for each file. The set 
consists of the following 10 files:  
 

   842,468 a10.jpg      - a high quality 1152 x 864 

baseline JPEG image of a fighter jet. 

 3,870,784 acrord32.exe - x86 executable code - Acrobat 

Reader 5.0. 

 4,067,439 english.dic  - an alphabetically sorted list of 

354,941 English words. 

 4,526,946 FlashMX.pdf  - PDF file with embedded JPEG and 

zipped BMP images. 

20,617,071 fp.log       - web server log, ASCII text. 

 3,782,416 mso97.dll    - x86 executable code from 

Microsoft Office. 

 4,168,192 ohs.doc      - Word document with embedded JPEG 

images. 

 4,149,414 rafale.bmp   - 1356 x 1020 16 bit color image 

in 24 bit RGB format. 

 4,121,418 vcfiu.hlp    - OCX help file - binary data with 

embedded text. 

 2,988,578 world95.txt  - ASCII text - 1995 CIA World 

Factbook. 
 
The top ranked program as of Dec. 31, 2009 with a total size 
of 8,813,124 bytes is paq8px, a context mixing algorithm with 
specialized models for JPEG images, BMP images, x86 code, 
text, and structured binary data. WinRK 3.1.2, another context 
mixing algorithm, is top ranked on 4 of the files (txt, exe, dll, 
pdf). WinRK uses a dictionary which is not included in the total 
size. 208 programs are ranked. zip 2.2 is ranked 163 with a 
size of 14,948,761.  
In the second benchmark or MFC (multiple file compression), 
programs are ranked by size, compression speed, 
decompression speed, and by a formula that combines size 
and speed with time scaled logarithmically. The data is not 
available for download. Files are compressed together to a 
single archive. If a compressor cannot create archives, then 
the files are collected into an uncompressed archive (TAR or 
QFC), which is compressed.  
In the MFC test, paq8px is top ranked by size. freearc is top 
ranked by combined score, followed by nanozip, winrar, and 
7zip. All are archivers that detect file type and apply different 
algorithms depending on type.  

 
2.5. Generic Compression Benchmark 
The Generic Compression Benchmark has the goal of 
evaluating compression algorithms in the context of universal 
prediction or intelligence, as defined by Legg and Hutter 
(2006). By this definition, data sources are assumed to have a 
universal Solomonoff distribution, i.e. generated by random 
programs with a preference for smaller or simpler programs. 
The evidence for such a distribution is the success of applying 

Occam's Razor to machine learning and to science in general: 
the simplest theories that fit the observed data tend to be the 
best predictors. The purpose of the test is to find good 
compression algorithms that are not tuned to specific file types.  
The benchmark does not publish any test data. Rather, it 
publishes a program to generate the data from a secret seed or 
an internally hardware generated random number. The data 
consists of the bit string outputs of one million random Turing 
machines, truncated to 256 bits and packed into null 
terminated byte strings. The average output size is about 6.5 
MB. The test allows public verification while eliminating the 
need to measure the decompresser size because it is not 
possible to hide the test data in the decompresser without 
knowing the cryptographic random number seed. The test 
produces repeatable results with about 0.05% accuracy. 
Programs are ranked by the ratio of compressed output to the 
compressed output of a reference compressor (ppmonstr) to 
improve repeatability.  
Unfortunately the benchmark fails to completely eliminate the 
problem of tuning compressors to public benchmarks. The top 
ranked program is a stationary context mixing model 
configuration implemented in zpaq using a preprocessor by J. 
Ondrus that splits each string into an incompressible prefix and 
a bit repeat instruction. Its score is 0.8750, compared to 1.3124 
for zip -9. Generally, however, the rank order of compressors is 
similar to that of other benchmarks.  

 
2.6. Other Benchmarks 
Some other benchmarks are mentioned briefly.  
Compression Ratings by Sami Runsas ranks programs on 5.4 
GB of various data types from public sources using a score 
that combines size and speed, similar to the Maximum 
Compression MFC test, but with minimum speed requirements. 
The benchmark includes a calculator that allows the user to 
rank compressors using different weightings for the importance 
of size, compression speed, and decompression speed. The 
top ranked programs for the default settings as of Jan. 2010 
are nanozip followed by freearc, CCM, flashzip, and 7-zip. 
Runsas is the author of nanozip.  
Squeeze Chart by Stephen Busch, ranks programs on 6.4 GB 
of mostly private data of various types by size only. The top 
ranked is paq8px_v67 as of Dec. 28, 2009.  
Monster of Compression by N. F. Antonio, ranks programs by 
size on 1,061,420,156 bytes of mostly public data of various 
types with a 40 minute time limit. There are separate tests for 
single file compressors and archivers. As of Dec. 20, 2009 the 
top ranked archiver is nanozip 0.7a and the top ranked file 
compressor is ccmx 1.30c. Both use context mixing.  
UCLC by Johan de Bock contains several benchmarks of 
public data for compressors with a command line interface 
(which is most of them). As of Feb. 2009, paq8i or paq8p was 
top ranked by size on most of them.  

 
3. Coding 
A code is an assignment of bit strings to symbols such that the 
strings can be decoded unambiguously to recover the original 
data. The optimal code for a symbol with probability p will have 
a length of log2 1/p bits. Several efficient coding algorithms are 
known.  

3.1. Huffman Coding 
Huffman (1952) developed an algorithm that calculates an 
optimal assignment over an alphabet of n symbols in O(n) time. 
deflate (zip) and bzip2 use Huffman codes. However, Huffman 
codes are inefficient in practice because code lengths must be 
rounded to a whole number of bits. If a symbol probability is not 
a power of 1/2, then the code assignment is less than optimal. 
This coding inefficiency can be reduced by assigning 
probabilities to longer groups of symbols but only at the cost of 
an exponential increase in alphabet size, and thus in run time.  
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The algorithm is as follows. We are given an alphabet and a 
probability for each symbol. We construct a binary tree by 
starting with each symbol in its own tree and joining the two 
trees that have the two smallest probabilities until we have one 
tree. Then the number of bits in each Huffman code is the 
depth of that symbol in the tree, and its code is a description of 
its path from the root (0 = left, 1 = right). For example, suppose 
that we are given the alphabet {0,1,2,3,4,5,6,7,8,9} with each 
symbol having probability 0.1. We start with each symbol in a 
one-node tree:  
   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

Because each small tree has the same probability, we pick any 
two and combine them:  
     .2 

     / \ 

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

Continuing,  
     .2      .2      .2      .2 

     / \     / \     / \     / \  

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

At this point, 8 and 9 have the two lowest probabilities so we 
have to choose those:  
     .2      .2      .2      .2      .2 

     / \     / \     / \     / \     / \ 

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

Now all of the trees have probability .2 so we choose any pair 
of them:  
         .4 

         / \ 

        /   \ 

       /     \ 

     .2      .2      .2      .2      .2 

     / \     / \     / \     / \     / \ 

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

We choose any two of the three remaining trees with 
probability .2:  
         .4              .4 

         / \             / \ 

        /   \           /   \ 

       /     \         /     \ 

     .2      .2      .2      .2      .2 

     / \     / \     / \     / \     / \ 

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

Now the two smallest probabilities are .2 and one of the .4:  
                             .6 

                             / \ 

                            /   \ 

                           /     \ 

         .4              .4       \ 

         / \             / \       \ 

        /   \           /   \       \ 

       /     \         /     \       \ 

     .2      .2      .2      .2      .2 

     / \     / \     / \     / \     / \ 

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

Now the two smallest are .4 and .6. After this step, the tree is 
finished. We can label the branches 0 for left and 1 for right, 
although the choice is arbitrary.  
                     1.0 

                     / \ 

                    /   \ 

                   /     \ 

                  /       \ 

               0 /         \ 1 

                /           \ 

               /             \ 

              /              .6 

             /               / \ 

            /             0 /   \ 1 

           /               /     \ 

         .4              .4       \ 

         / \             / \       \ 

      0 /   \ 1       0 /   \ 1     \ 

       /     \         /     \       \ 

     .2      .2      .2      .2      .2 

     / \     / \     / \     / \     / \ 

   .1  .1  .1  .1  .1  .1  .1  .1  .1  .1 

    0   1   2   3   4   5   6   7   8   9 

 
From this tree we construct the code:  
 

Symbol Code 

------ ---- 

  0    000 

  1    001 

  2    010 

  3    011 

  4    1000 

  5    1001 

  6    1010 

  7    1011 

  8    110 

  9    111 

 
A code may be static or dynamic. A static code is computed by 
the compressor and transmitted to the decompresser as part of 
the compressed data. A dynamic code is computed by the 
compressor and periodically updated, but not transmitted. 
Instead, the decompresser reconstructs the code using exactly 
the same algorithm using the previously decoded data to 
estimate the probabilities. Neither method compresses better 
because any space saved by not transmitting the model is paid 
back by having less data with which to estimate probabilities.  
Huffman codes are typically static, mainly for speed. The 
compressor only needs to compute the code once, using the 
entire input to compute probabilities. To transmit a Huffman 
table, it is only necessary to send the size of each symbol, for 
example: (3,3,3,3,4,4,4,4,3,3). Both the compressor and 
decompresser would then assign codes by starting with the 
shortest symbols, counting up from 0, and appending a 0 bit 
whenever the code gets longer. This would result in the 
following different but equally effective code:  
 

Symbol Size Code 

------ ---- ---- 

  0      3  000 

  1      3  001 

  2      3  010 

  3      3  011 

  8      3  100 

  9      3  101 

  4      4  1100 

  5      4  1101 

  6      4  1110 

  7      4  1111 

 
For file compression, Huffman coded data still needs to be 
packed into bytes. JPEG packs bits in MSB (most significant 
bit) to LSB (least significant bit) order. For example, the codes 

00001 00111 would be packed as 00001001 11...... . The 
deflate format used in zip, gzip, and png files packs bits in LSB 

to MSB order, as if each byte is written backward, i.e. 10010000 

......11 .  
One other complication is that the last byte has to be padded 
in such a way that it is not interpreted as a Huffman code. 
JPEG does this by not assigning any symbol to a code of all 1 
bits, and then padding the last byte with 1 bits. Deflate handles 
this by reserving a code to indicate the end of the data. This 
tells the decoder not to decode the remaining bits of the last 
byte.  

 
3.2. Arithmetic Coding 
 
Huffman coding has the drawback that code lengths must be a 
whole number of bits. This effectively constrains the model to 
probabilities that are multiples of 1/2. The size penalty for 
modeling errors is roughly proportional to the square of the 
error. For example, a 10% error results in a 1% size penalty. 
The penalty can be large for small codes. For example, the 
only possible ways to Huffman code a binary alphabet is to 
code each bit as itself (or its opposite), resulting in no 
compression.  

http://www.gzip.org/zlib/rfc-deflate.html


Arithmetic coding (Rissanen, 1976), also called range coding, 
does not suffer from this difficulty. Let P be a model, meaning 
that for any string x, P(x) is the probability of that string. Let P(< 
x) be the sum of the probabilities of all strings lexicographically 
less than x. Let P(â‰¤ x) = P(< x) + P(x). Then the arithmetic 
code for a string x is the shortest binary number y such that 
P(< x) â‰¤ y < P(â‰¤ x). Such a number can always be found 
that is no more than 1 bit longer than the Shannon limit log2 
1/P(x).  
An arithmetic code can be computed efficiently by expressing 
P(x) as a product of successive symbol predictions by the 
chain rule, P(x) = Î i P(xi | x1x2...xi-1) where xi means the i'th 
symbol (bit or character) in x. Then the arithmetic code can be 
computed by updating a range [low, high) (initially [0, 1)) for 
each symbol by dividing the range in proportion to the 
probability distribution for that symbol. Then the portion of the 
range corresponding to the symbol to be coded is used to 
update the range. As the range shrinks, the leading bits of low 
and high match and can be output immediately because the 
code y must be between them. The decompresser is able to 
decode y by making an identical sequence of predictions and 
range reductions.  
Most modern data compressors use arithmetic coding. Early 
compressors used Huffman coding because arithmetic coding 
was patented and because its implementation required 
multiplication operations, which was slow on older processors. 
Neither of these issues are relevant today because the 
important patents have expired and newer processors have 
fast multiply instructions (faster than memory access).  
The most common arithmetic coders code one byte at a time 
(PPM) or one bit at a time (CM, DMC). Free source code with 
no licensing restrictions for a bytewise encoder can be found in 
the source code for ppmd (D. Shkarin). Bitwise coders licensed 
under GPL can be found in the source code for PAQ based 
compressors including FPAQ, LPAQ, and ZPAQ, the BWT 
compressor BBB, and the symbol ranking compressor SR2. 
The simplest of these is the order 0 coder fpaq0.  
The following is the arithmetic coder from zpaq 1.10 It encodes 
bit y (0 or 1) with probability p = P(1) * 65536 (a scaled 16 bit 
number) and codes to FILE* out. The encoder range is 
represented by two 32 bit integers (unsigned int) low and high, 
which are initially 1 and 0xffffffff respectively. After the range is 
split, a 1 is coded in the lower part of the range and a 0 in the 
upper part. After the range is split and reduced, it is normalized 
by shifting out any leading bytes that are identical between low 
and high. The low bits shifted in are all 0 bits for low and all 1 
bits for high.  
 

  // Initial state 

  unsigned int low = 1, high = 0xffffffff; 

 

  // Encode bit y with probability p/65536 

  inline void Encoder::encode(int y, int p) { 

    assert(out);  // output file 

    assert(p>=0 && p<65536); 

    assert(y==0 || y==1); 

    assert(high>low && low>0); 

    unsigned int mid=low+((high-low)>>16)*p+((((high-

low)&0xffff)*p)>>16); // split range 

    assert(high>mid && mid>=low); 

    if (y) high=mid; else low=mid+1; // pick half 

    while ((high^low)<0x1000000) { // write identical 

leading bytes 

      putc(high>>24, out);  // same as low>>24 

      high=high<<8|255; 

      low=low<<8; 

      low+=(low==0); // so we don't code 4 0 bytes in a 

row 

    } 

  } 

 
The range split is written to avoid 32 bit arithmetic overflow. It 
is equivalent to:  
    unsigned int mid=low+((unsigned long long)(high-

low)*p>>16); 

where (unsigned long long) is a 64 bit unsigned type, which 
not all compilers support. The initialization of low to 1 instead of 
0 and the statement  
   low+=(low==0); 

discard a tiny bit of the range to avoid writing 4 consecutive 0 
bytes, which the ZPAQ compressor uses to mark the end of 
the encoded data so it can be found quickly without decoding. 
This is not a requirement in general. It is not used in the rest of 
the PAQ series. The decoder looks like this:  
 

  // Initial state 

  unsigned int low=1, high=0xffffffff, curr; 

  for (int i=0; i<4; ++i) 

    curr=curr<<8|getc(in);  // first 4 bytes of input 

 

  // Return decoded bit from file 'in' with probability 

p/65536 

  inline int Decoder::decode(int p) { 

    assert(p>=0 && p<65536); 

    assert(high>low && low>0); 

    if (curr<low || curr>high) error("archive corrupted"); 

    assert(curr>=low && curr<=high); 

    unsigned int mid=low+((high-low)>>16)*p+((((high-

low)&0xffff)*p)>>16); // split range 

    assert(high>mid && mid>=low); 

    int y=curr<=mid; 

    if (y) high=mid; else low=mid+1; // pick half 

    while ((high^low)<0x1000000) { // shift out identical 

leading bytes 

      high=high<<8|255; 

      low=low<<8; 

      low+=(low==0); 

      int c=getc(in); 

      if (c==EOF) error("unexpected end of file"); 

      curr=curr<<8|c; 

    } 

    return y; 

  } 

 
The decoder receives as input p, the 16 bit probability that the 
next bit is a 1, and returns the decoded bit. The decoder has 
one additional variable in its state, the 32 bit integer curr, which 
is initialized to the first 4 bytes of compressed data. Each time 
the range is rescaled, another byte is read from FILE* in. high 
and low are initialized as in the encoder.  
One additional detail is how to handle the end of file. Most of 
the PAQ series compressors encode the file size separately 
and perform 8 encoding operations per byte. After the last 
encoding operation, the 4 bytes of either high or low or some 
value in between must be flushed to the archive because the 
decoder will read these 4 bytes in.  
ZPAQ encodes 9 bits per byte, using a leading 1 bit modeled 
with probability p = 0 to mark the end of file. The effect on the 
encoder is to set mid = low and cause 4 bytes to be flushed. 
After that, 4 zero bytes are written to mark the end of the 
compressed data. When the end of file bit is decoded, the 
decoder reads these 4 zero bytes into curr, resulting in low = 1, 
curr = 0, high = 0xffffffff. Any further decoding would result in 
an error because the condition low â‰¤ curr â‰¤ high fails.  

 
3.3. Asymmetric Binary Coding 
Most high end compressors use arithmetic coding. However, 
another possibility with the same theoretical coding and time 
efficiency for bit strings is asymmetric binary coding or ABC 
(Duda, 2007). An asymmetric coder has a single n-bit integer 
state variable y, as opposed to two variables (low and high) in 
an arithmetic coder. This allows a lookup table implementation. 
A bit y (0 or 1) with probability p = P(y = 1) (0 < p < 1, a 
multiple of 2

-n
) is coded in state x, initially 2

n
:  

  if y = 0 then x := ceil((x+1)/(1-p)) - 1 

  if y = 1 then x := floor(x/p) 

To decode, given x and p  
  y = ceil((x+1)*p) - ceil(x*p)  (0 if fract(x*p) < 1-p, 

else 1) 

  if y = 0 then x := x - ceil(x*p) 

  if y = 1 then x := ceil(x*p) 

x is maintained in the range 2
n
 to 2

n+1
 - 1 by writing the low bits 

of x prior to encoding y and reading into the low bits of x after 
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decoding. Because compression and decompression are 
reverse operations of each other, they must be performed in 
reverse order by storing the predictions and coded bits in a 
stack in either the compressor or the decompresser.  
The coder is implemented in the order-0 compressors fpaqa, 
fpaqb, and fpaqc and the context mixing compressor lpaq1a 
from the PAQ series. fpaqa uses lookup tables for both 
compression and decompression. It uses a 10 bit state and the 
probability is quantized to 7 bits on a nonlinear scale (finer near 
0 and 1 and coarse near 1/2). The stack size is 500,000. 
Increasing these numbers would result in better compression 
at the expense of a larger table. fpaqb uses direct calculations 
except for division, which uses a table of inverses because 
division is slow. fpaqc is fpaqb with some speed optimizations. 
The coder for fpaqc is used in lpaq1a (a context mixing 
program), replacing the arithmetic coder in lpaq1.  
Although a lookup table implementation might be faster on 
some small processors, it is slower on modern computers 
because multiplication is faster than random memory access. 
Some benchmarks are shown for enwik8 (100 MB text) on a 
2.0 GHz T3200 processor running on one of two cores. Ratio is 
fraction of original size. Compression and decompression 
times are nanoseconds per byte.  
                   Ratio   Comp Decomp Coder 

                  -------  ----  ----  ----- 

  fpaqa           .61310    247   238  ABC lookup table 

  fpaqb           .61270    244   197  ABC direct 

calculation 

  fpaqc           .61270    246   173  ABC direct 

calculation 

  fpaqa -DARITH   .61280    130   112  arithmetic (fpaqa 

compiled with -DARITH) 

 
For high end compressors, CPU time and memory are 
dominated by the model, so the choice of coder makes little 
difference. lpaq1 is a context mixing compressor, a 
predecessor of lpaq9m, ranked third of 127 on the large text 
benchmark as of Feb. 2010. lpaq1a is the same except that the 
arithmetic coder was replaced by the asymmetric binary coder 
from fpaqb. (Timed on a 2.188 GHz Athlon-64 3500+).  
 

                   Ratio   Comp Decomp Coder 

                  -------  ----  ----  ----- 

  lpaq1a          .19755   3462  3423  ABC direct 

calculation (fpaqb) 

  lpaq1           .19759   3646  3594  arithmetic 

 
The arithmetic coder in lpaq1 and fpaqa -DARITH compresses 
slightly worse than the ABC coder because it uses 12 bits of 
precision for the probability, rather than 16 bits as in ZPAQ.  

 
4. Modeling 
 
A model is an estimate of the probability distribution of inputs 
to a compressor. Usually this is expressed as a sequence of 
predictions of successive symbols (bits, bytes, or words) in the 
input sequence given the previous input as context. Once we 
have a model, coding is a solved problem. But (as proved by 
Kolmogorov) there is no algorithm for determining the best 
model. This is the hard problem in data compression.  
A model can be static or adaptive. In the static case, the 
compressor analyzes the input, computes the probability 
distribution for its symbols, and transmits this data to the 
decompresser followed by the coded symbols. Both the 
compressor and decompresser select codes of the appropriate 
lengths using identical algorithms. This method is often used 
with Huffman coding.  
Typically the best compressors use dynamic models and 
arithmetic coding. The compressor uses past input to estimate 
a probability distribution (prediction) for the next symbol without 
looking at it. Then it passes the prediction and symbol to the 
arithmetic coder, and finally updates the model with the symbol 
it just coded. The decompresser makes an identical prediction 

using the data it has already decoded, decodes the symbol, 
then updates its model with the decoded output symbol. The 
model is unaware of whether it is compressing or 
decompressing. This is the technique we will use in the rest of 
this chapter.  

 
4.1. Fixed Order Models 
The simplest model is a fixed order model. An order n model 
inputs the last n bytes or symbols (the context) into a table and 
outputs a probability distribution for the next symbol. In the 
update phase, the predicted symbol is revealed and the table is 
updated to increase its probability when the same context next 
appears. An order 0 model uses no context.  
 
4.1.1. Bytewise Encoding 

A probability distribution is typically computed by using a 
counter for each symbol in the alphabet. If the symbols are 
bytes, then the size of the alphabet is 256. The prediction for 
each symbol is the count for that symbol divided by the total 
count. The update procedure is to increment the count for that 
symbol. If the arithmetic coder codes one byte at a time, then 
you pass the array of counts and the total to the arithmetic 
coder. For compression, you also pass the byte to be coded. 
For decompression, it returns the decoded byte. The procedure 
looks like this:  
 

  const int CONTEXT_SIZE = 1 << (n*8);   // for order n 

  int count[CONTEXT_SIZE][256] = {{0}};  // symbol counts 

  int context = 0;                       // last n bytes 

packed together 

 

  // Update the model with byte c 

  void update(int c) { 

    ++count[context][c]; 

    context = (context << 8 | c) % CONTEXT_SIZE; 

  } 

 

  // compress byte c 

  void compress(int c) { 

    encode(count[context], c);  // predict and encode 

    update(c); 

  } 

 

  // decompress one byte and return it 

  int decompress() { 

    int c = decode(count[context]); 

    update(c); 

    return c; 

  } 

 
The functions encode() and decode() are assumed to be 
encoding and decoding procedures for a bytewise arithmetic 
coder. They each take an array of 256 counts and divide the 
current range in proportion to those counts. encode() then 
updates the range to the c'th subrange. decode() reads the 
compressed data and determines that it is bounded by the c'th 
range and returns c. The update() procedure stores the last n 
bytes in the low bits of the context.  
There are a few problems with this method. First, what 
happens if a byte has a probability of zero? An ideal encoder 
would give it a code of infinite size. In practice, the encoder 
would fail. One fix is to initialize all elements of count to 1. 
Sometimes it improves compression if the initial count were 
smaller, say 0.5 or 0.1. This could be done effectively by 
increasing the increment to, say, 2 or 10.  
A second problem is that a count can eventually overflow. One 
solution is that when a count becomes too large, to rescale all 
of the counts by dividing by 2. Setting a small upper limit 
(typically 30 to several hundred) can improve compression of 
data with blocks of mixed types (like text with embedded 
images) because the statistics reflect recent input. This is an 
adaptive or nonstationary model. Data with uniform statistics 
such as pure text are compressed better with stationary 
models, where the counts are allowed to grow large. In this 
case, probabilities depend equally on all of the past input.  
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A third problem is that the table of counts grows exponentially 
with the context order. Some memory can be saved by 
changing count[] to unsigned char and limiting counts to 255. 
Another is to replace the context with a hash, for example:  
 

  const int k = 5;  // bits of hash per byte 

  const int CONTEXT_SIZE = 1 << (n*k);  // order n 

  ... 

  context = (context * (3 << k) + c) % CONTEXT_SIZE; // 

update context hash 

 
The multiplier can be any odd number left shifted by another 
number k in the range 1 through 8. Then the last nk bits of 
context depend on the last n bytes of input. A larger k will result 
in better compression at the expense of more memory.  
A fourth problem is that bytewise arithmetic coding is 
inefficient. The decoder must compute 256 range intervals to 
find the one containing the compressed data. This could be 
solved by using cumulative counts, i.e. count[context][c] is the 
sum of counts for all byte values â‰¤ c, but that only moves 
the inefficiency to the update() function, which must increment 
up to 256 values. This problem is solved by encoding one bit at 
a time using the bitwise encoder like the one described in 
section 3.2.  
 
4.1.2. Bitwise encoding 

The idea is to encode one bit at a time by using the previous 
bits of the current byte as additional context. Only two values 
are stored: a count of ones, count1, and a total count. The 
prediction is count1/count. The update procedure is to 
increment count and to increment count1 if the bit is 1. We 
handle zero probabilities, overflow, and large contexts as 
before.  
Alternatively, we can avoid a (slow) division operation by 
storing the prediction directly. Each bitwise context is 
associated with a prediction that the next bit will be a 1 (initially 
1/2) and an update count (initially 0). The update rate is initially 
fast and decreases as the count is incremented, resulting in a 
stationary model. Alternatively, the count can be bounded, 
resulting in an adaptive model.  
 

  // Prediction and count for one bitwise context 

  struct Model { 

    double prediction;  // between 0 and 1 that next bit 

will be a 1 

    int count;          // number of updates 

    Model(): prediction(0.5), count(0) {} 

  }; 

 

  Model model[CONTEXT_SIZE][256]; // context, bit_context 

-> prediction and count 

  int context = 0;                // bytewise order n 

context 

 

  // Compress byte c in MSB to LSB order 

  void compress(int c) { 

    for (int i=7; i>=0 --i) { 

      int bit_context = c+256 >> i+1; 

      int bit = (c >> i) % 2; 

      encode(bit, model[context][bit_context].prediction); 

      update(bit, model[context][bit_context]); 

    } 

    context = (context << 8 | c) % CONTEXT_SIZE; 

  } 

 

  // Decompress and return a byte 

  int decompress() { 

    int c;  // bit_context 

    int bit; 

    for (c = 1; c < 256; c = c * 2 + bit) { 

      bit = decode(model[context][c].prediction); 

      update(bit, model[context][c]); 

    } 

    c -= 256;  // decoded byte 

    context = (context << 8 | c) % CONTEXT_SIZE; 

    return c; 

  } 

 

  // Update the model 

  void update(int bit, Model& m) { 

    const double DELTA = 0.5; 

    const int LIMIT = 255; 

    if (m.count < LIMIT) ++m.count; 

    m.prediction += (bit - m.prediction) / (m.count + 

DELTA); 

  } 

 
The compress() function takes a byte c and compresses it one 
bit at a time starting with the most significant bit. At each of the 
8 steps, the previously coded bits are packed into a number in 
the range (1..255) as a binary number 1 followed by up to 7 
earlier bits. For example, if c = 00011100, then bit_context 
takes the 8 successive values 1, 10, 100, 1000, 10001, 
100011, 1000111, 10001110. In decompress(), c plays the 
same role. After 8 decoding operations it has the value 
100011100 and the leading 1 is stripped off before being 
returned.  
As before, the context may also be a hash.  
The update function computes the prediction error (bit - 
m.prediction) and adjusts the prediction in inverse proportion to 
the count. The count is incremented up to a maximum value. At 
this point, the model switches from stationary to adaptive.  
DELTA and LIMIT are tunable parameters. The best values 
depend on the data. A large LIMIT works best for stationary 
data. A smaller LIMIT works better for mixed data types. On 
stationary sources, the compressed size is typically larger by 
1/LIMIT. The choice of DELTA is less critical because it only 
has a large effect when the data size is small (relative to the 
model size). With DELTA = 1, a series of zero bits would result 
in the prediction sequence 1/2, 1/4, 1/6, 1/8, 1/10. With DELTA 
= 0.5, the sequence would be 1/2, 1/6, 1/10, 1/14, 1/18. Cleary 
and Teahan (1995) measured the actual probabilities in 
English text and found a sequence near 1/2, 1/30, 1/60, 1/90... 
for zeros and 1/2, 19/20, 39/40, 59/60... for consecutive ones. 
This would fit DELTA around 0.07 to 0.1.  
A real implementation would use integer arithmetic to 
represent fixed point numbers, and use a lookup table to 
compute 1/(m.count + DELTA) in update() to avoid a slow 
division operation. ZPAQ packs a 22 bit prediction and 10 bit 
count into a 32 bit model element. As a further optimization, the 
model is stored as a one dimensional array aligned on a 64 
byte cache line boundary. The bytewise context is updated 
once per byte as usual, but the extra bits are expanded in 
groups of 4 in a way that causes only two cache misses per 
byte. The leading bits are expanded to 9 bits as shown below, 
then exclusive-ORed with the bytewise context address.  
 

  0 0000 0001 

  0 0000 001x 

  0 0000 01xx 

  0 0000 1xxx 

  1 xxxx 0001 

  1 xxxx 001x 

  1 xxxx 01xx 

  1 xxxx 1xxx 

 
ZPAQ fixes DELTA at 1/2 but LIMIT is configurable to 4, 8, 
12,..., 1020. The following table shows the effect of varying 
LIMIT for an order 0 model on 10

6
 digits of Ï€ (stationary) and 

orders 0 through 2 on the 14 file Calgary corpus concatenated 
into a single data stream (nonstationary). Using a higher order 
model can improve compression at the cost of memory. 
However, direct lookup tables are not practical for orders 
higher than about 2. The order 2 model in ZPAQ uses 134 MB 
memory. The higher orders have no effect on Ï€ because the 
digits are independent (short of actually computing Ï€).  
 

          pi              Calgary corpus 

  LIMIT order-0     order-0   order-1   order-2 

  ----- -------    --------- --------- --------- 

     4  455,976    1,859,853 1,408,402 1,153,855 

     8  435,664    1,756,081 1,334,979 1,105,621 

    16  425,490    1,704,809 1,306,838 1,089,660 

    32  420,425    1,683,890 1,304,204 1,091,029 

    64  417,882    1,680,784 1,315,988 1,101,612 

   128  416,619    1,686,478 1,335,080 1,115,717 

   256  415,990    1,696,658 1,357,396 1,129,790 



   512  415,693    1,710,035 1,379,823 1,141,800 

  1020  415,566    1,726,280 1,399,988 1,150,737 

 
4.1.3. Indirect Models 

An indirect context model answers the question of how to map 
a sequence of bits to a prediction for the next bit. Suppose you 
are given a sequence like 0000000001 and asked to predict 
what bit is next. If we assume that the source is stationary, 
then the answer is 0.1 because 1 out of 10 bits is a 1. If we 
assume a nonstationary source then the answer is higher 
because we give preference to newer history. How do we 
decide?  
An indirect model learns the answer by observing what 
happened after similar sequences appeared. The model uses 
two tables. The first table maps a context to a bit history, a 
state representing a past sequence of bits. The second table 
maps the history to a prediction, just like a direct context 
model.  
Indirect models were introduced in paq6 in 2004 A bit history 
may be written in the form (n0, n1, LB) which means that there 
have been n0 zeros, n1 ones, and that the last bit was LB (0 or 
1). For example, the sequence 00101 would result in the state 
(3, 2, 1). The initial state is (0, 0, -) meaning there is no last bit.  
In paq6 and its derivatives (including ZPAQ), a bit history is 
stored as 1 byte, which limits the number of states to 256. The 
state diagram below shows the allowed states in ZPAQ with n0 
on the horizontal axis and n1 on the vertical axis. Two dots (:) 
represents two states for LB=0 and LB=1. A single dot 
represents a single state where LB can take only one value 
because the state is reachable with either a 0 or 1 but not both. 
(LB is the larger of the two counts). In general, an update with 
a 0 moves to the right and an update with a 1 moves up. The 
initial state is marked with a 0 in the lower left corner. The 
diagram is symmetric about the diagonal. There are a total of 
219 states.  
  n1 

  48   . 

  47   . 

  46   . 

  : 

  23   . 

  22   . 

  21   . 

  20  .. 

  19  .. 

  18  .. 

  17  .. 

  16  .. 

  15  ... 

  14  ... 

  13  ... 

  12  ... 

  11  ... 

  10  ... 

  9   ... 

  8   .... 

  7   .::: 

  6   .:::: 

  5   .::::: 

  4   .:::::: 

  3   .:::::::. 

  2   .:::::::........ 

  1   .:::::::........................................ 

  0   0.................... 

 

      012345678      15   20                         48 n0 

 
There are some exceptions to the update rule. Since it is not 
possible to go off the end of the diagram, the general rule is to 
move back to the nearest allowed state in the direction of the 
lower left corner (preserving the ratio of n0 to n1). There is 
another rule intended to make the model somewhat 
nonstationary, and that is when one of the counts is large and 
the other is incremented, then the larger count is reduced. The 
specific rule from the ZPAQ standard is that if the larger count 
is 6 or 7 it is decremented, and if it is larger than 7 then it is 
reduced to 7. This rule is applied first, prior to moving 

backward from an invalid state. For example, a sequence of 10 
zeros, 43 ones and a zero results in:  
 

  Input       State     Rule 

  ----------  --------  ------ 

  0000000000  (10,0,0)  Normal case, move right 

  1           (7,1,1)   Discount larger count 

  1           (6,2,1)   Discount 

  1           (5,3,1)   Discount 

  1           (5,4,1)   Normal case, move up 

  1           (5,5,1)   Normal case, move up 

  1           (4,5,1)   Move up off diagram, then back 

  1           (4,6,1)   Normal case, move up 

  1           (3,5,1)   Move up off diagram, then back 

  111         (3,8,1)   Normal, move up 

  1           (2,6,1)   Move off diagram and back 

  111111111   (2,15,1)  Normal 

  1           (1,8,1)   Move off diagram and back 

  111..(20x)  (1,48,1)  Normal, move up 

  1           (1,48,1)  Can't go any further 

  0           (2,7,0)   Discount 

 
A bit history is mapped to a prediction like a direct context 
model, except that there is no count and the learning rate is 
fixed at 1/4096 of the error. The initial prediction for each bit 
history is (n1 + 0.5)/(n0 + n1 + 1).  
The details of the design were determined experimentally to 
improve compression slightly over the PAQ8 series, which 
uses a similar design.  
An indirect model is more memory efficient because it uses 
only one byte per context instead of four. In all of the PAQ 
series, it is implemented as a hash table. In the PAQ8 series, 
the hash table is designed to allow lookups with at most 3 
cache misses per byte. In ZPAQ, there are 2 cache misses per 
byte, similar to the direct model. The ZPAQ hash table maps a 
context on a 4 bit boundary to an array of 15 bit histories and 
an 8-bit checksum. The histories represent all 15 possible 
contexts that occur after up to 3 more bits. The steps are as 
follows:  

 Once per byte, a user specified context hash is computed.  

 Once every 4 bits, the context hash is combined with the 
first 4 bits (if any) and a hash table lookup is done.  

 A hash index h and an 8 bit checksum are extracted from 
the 32 bit hash.  

 We look for a matching checksum at addresses h, h XOR 1 
and h XOR 2 (to stay within the cache line) and return the 
first match found.  

 If no match is found, then the array with the smallest n0 + n1 
in the current context is replaced.  

In a direct context model, we don't check for hash collisions 
because they have only a very small effect on compression. 
The effect is larger for indirect models so we use an 8 bit 
confirmation. There is still about a 1.2% chance that a collision 
won't be detected but the effect on compression is very small.  
The following sizes were obtained for Ï€ and the Calgary 
corpus with order 0 through 5 models and a hash table size of 
2

28
 (268 MB). For comparison, the best results for direct 

context models are shown. Direct models 3, 4, and 5 use 
context hashes with LIMIT set to 32 and the same memory 
usage.  
      Model           Direct   Indirect 

  ---------------    -------   -------- 

  pi      order 0    415,566    426,343 

  Calgary order 0  1,680,784  1,716,974 

  Calgary order 1  1,304,204  1,289,769 

  Calgary order 2  1,089,660  1,048,050 

  Calgary order 3  1,017,354    964,942 

  Calgary order 4  1,069,981  1,010,329 

  Calgary order 5  1,232,997  1,148,677 

There are many other possibilities. For example, M1, a context 
mixing compressor by Christopher Mattern, uses 2 dimensional 
context models taking 2 quantized bit histories as input.  

 
4.2. Variable Order Models (DMC, PPM) 
Fixed order models compress better using longer contexts up 
to a point (order 3 for the Calgary corpus). Beyond that, 

file:///Z:\DCE_2010-02-26\paq.html
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compression gets worse because many higher order contexts 
are being seen for the first time and no prediction can be 
made. One solution is to collect statistics for different orders at 
the same time and then use the longest matching context for 
which we know something. DMC does this for bit level 
predictions, and PPM for byte level predictions.  
 
4.2.1. DMC 

DMC (dynamic Markov coding) was and described in a paper 
by Gordon Cormack and Nigel Horspool in 1987 and 
implemented in C The compressor hook by Nania Francesco 
Antonio was written in 2007 and is based on this 
implementation. DMC was implementd separately in ocamyd 
by Frank Schwellinger in 2006.  
DMC uses a table of variable length bit level contexts that map 
to a pair of counts n0 and n1. It predicts the next bit with 
probability n1/(n0+n1) and updates by incrementing the 
corresponding count. This implements a stationary, direct 
context model. There are other possibilities, of course.  
Contexts are not stored or looked up in the table. Rather, each 
table entry has a pair of pointers to the next entries 
corresponding to appending a 0 or 1 bit to the current context. 
The next context might also drop bits off the back. Normally it 
is arranged so that each context starts on a byte boundary. In 
DMC and HOOK, the initial table contains 64K entries 
consisting of all contexts of length 8 to 15 bits that start on a 
byte boundary, i.e. bytewise order 1.  
In addition to updating counts, we may also add new table 
entries corresponding to the input just observed. We do this by 
"cloning" the next state with one that does not drop any bits off 
the back. Consider the case below where the context is 1111 
and we update the model with a 0 bit. Without cloning, we 
would increment ny, transition to state 110, and the next 
prediction would be n1/(n0+n1).  
 

              n0 ----> 1100           n0*(1-w) ----> 1100 

       ny       /                             /     / 

 1111 -----> 110               1111        110     / 

      (y=0)     \                 |           \   / 

              n1 ----> 1101       |   n1*(1-w) ----> 1101 

                                  |             /    / 

                                  |     n0*w   /    / 

                                  | ny        /    / 

                                  +----> 11110    / 

                                              \  / 

                                        n1*w   -- 

       Before cloning            After cloning 110 to 11110 

 

The cloning procedure is to allocate a new state (labeled 
11100) and copy its two output pointers from 110. The new 
state will also "inherit" the same prediction by copying the two 
counts. However we proportionally reduce the two original and 
two new counts in proportion to the contribution from the 
original input (1111) and from other states. The weight w = 
ny/(n0+n1) is the fraction of counts in state 110 that came from 
1111 after a 0 bit. The newly cloned state gets that fraction of 
the counts and the original gets the rest. This scaling maintains 
the condition that the input and output counts are equal. The 
counts are implemened as fixed or floating point numbers to 
allow fractional values. The transition from 1111 to 110 is 
changed to point to the new state 11110.  
Before cloning (which uses memory), there should be sufficient 
justification to do so. The two conditions are that the cloned 
state appears often enough (ny exceeds a threshold) and that 
there are sufficient other transitions to the original state that 
would remain after cloning (n0+n1-ny exceeds a threshold). In 
the original DMC, both thresholds are 2. Normally when the 
state table is full, the model is discarded and re-initialized. 
Setting higher thresholds can delay this from happening.  
hook v1.4 also has an LZP preprocessor to encode long, 
repeated strings with the match length from the last matching 
context prior to DMC encoding. It compresses calgary.tar to 
851,043 bytes in 1.9 seconds with 70 MB memory on a 2.0 
GHz T3200. It compresses the files individually to a total of 
840,970 bytes.  

 
4.2.2 PPM 

PPM (prediction by partial match) uses a byte-wise context 
model. Each context up to some maximum order is mapped to 
an array of counts for the next byte that occurred in this 
context. To predict the next byte, we find the longest context 
seen at least once before and allocate probabilities in 
proportion to those counts. The main complication is that some 
of the counts might be zero but we must never assign a zero 
probability to any byte value because if it did occur, it would 
have an infinite code length. This is handled by assigning an 
"escape" probability that the next byte will not be any of the 
ones that have nonzero counts, and divide those according to 
the frequency distribution of the next lower context. This is 
repeated all the way down to order 0. If any of the 256 byte 
values have still not been assigned a probability, then the 
remaining space is divided equally (an order -1 model).  
Example: Suppose the input is BANANABOAT and we are at 
the point of coding the second B.  

 The order 6 context BANANA has not been seen 
previously.  

 The order 5 context ANANA has not been seen previously.  

 The order 4 context NANA has not been seen previously.  

 The order 3 context ANA has been seen once before, 
followed by N. The symbol we want to code is different so we 
code an "escape" symbol.  

 The order 2 context NA was seen once, followed by N. 
Because N was already considered, we exclude it. Since 
there are no other predictions, there is nothing to code.  

 The order 1 context is A. This was seen twice, in both cases 
followed by N which was excluded, so again there is nothing 
to code.  

 The order 0 context was seen 6 times with values B (once), 
A (3 times) and N (twice). After excluding N we have 4 
symbols with B having 1/4 of the probability and A having 3/4. 
We still need an escape probability Pesc that the next symbol 
will be other than B, A, or N. We then code B with probability 
(1 - Pesc)/4. We would have coded A with probability 3(1 - 
Pesc)/4 and any other symbol with probability pesc/253.  

Estimating the escape probability can be complex. Suppose 
you draw 10 marbles from an urn. There are 8 blue, 1 green, 
and 1 white. What is the probability that the next marble will be 
a different color not seen before?  

 By method "C" (Bell, Witten, and Cleary, 1989), 3 of the 10 
marbles you drew had a novel color, so the probability would 
be 0.3.  

 But novel colors would be expected to show up early. By 
method "X" (Witten and Bell, 1991), 2 of the colors appeared 
exactly once, so the probability would be 2/10 = 0.2.  

 Method "X" can fail if no colors appeared exactly once 
(because the escape probability would be 0). Method "XC" is 
to use "X" when possible, falling back to "C" when needed. 
Method XC was shown experimentally to compress better 
than C.  

 A secondary escape estimation (SEE) model would look at 
other cases with the same or similar distribution as {8, 1, 1}, 
and take the fraction of those where a novel color appeared 
next. This improves on XC.  

Method X was shown to be optimal under certain assumptions, 
including that the source is stationary. Of course, that is not 
always the case. Suppose you receive the sequence 
"BBBBBBBBWG" and are asked to predict whether the next 
character will be novel. The answer might be different for the 
sequence "WGBBBBBBBB".  
Method "C" was implemented in ha, an order 5 PPMC archiver 
by Harry Hirvola in 1993. Later, Charles Bloom (1998) used 
SEE in PPMZ. Dmitry Shkarin (2002) refined this method in 
ppmd. ppmd variant I, released as source code in 2002, is 
used in several archivers such as WinZIP, freearc, 7zip, and 
WinRAR. A newer variant J in 2006 gets slightly better 

http://plg1.cs.uwaterloo.ca/%7Eftp/dmc/dmc.c
http://heartofcomp.altervista.org/
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compression. The code is the basis of slower but better 
compressing programs such as ppmonstr and durilca. A variant 
of durilca using 13 GB memory is top ranked on the large text 
benchmark.  
ppmd uses a complex SEE model. It considers 3 cases:  

1. binary context - in the highest order context only one value 
has appeared (one or more times).  
2. nm-context - two or more values have appeared, and none 
of them have appeared (are masked) in a higher order 
context.  
3. m-context - two or more values have appeared, and one or 
more have appeared (are masked) in a higher order context.  

In the binary context, a 13 bit context to a direct context model 
is constructed:  

 7 bits for the quantized count of the one symbol that 
appeared.  

 2 bits for the quantized alphabet size of the next lower order 
context.  

 1 bit for the quantized probability of the previously coded 
byte.  

 1 bit to indicate whether the two high order bits of the 
previous byte are 00 (to distinguish letters from other 
characters in text).  

 1 bit to indicate whether the two high order bits of the 
predicted byte are 00.  

 1 bit for the quantized number of successive bytes that 
were not escaped.  

In the nm-context, the program fits the frequency distribution to 
a geometric approximation such that the n'th most frequent 
value is proportional to r

n
. Then r is the context.  

In the m-context, the SEE context is constructed from:  

 The number of unmasked values with counts > 0, quantized 
to 25 levels.  

 2 bits based on comparison of the alphabet sizes of the 
current and next higher and lower order contexts.  

 1 bit to indicate the two high bits of the previous byte are 
00.  

 The average frequency per value, quantized to 4 levels.  
ppmonstr uses an even more complex SEE context, and 
additionally uses interpolation to smooth some of the quantized 
contexts. It also adjusts the prediction for the most probable 
byte using secondary symbol estimation (SSE). This is a direct 
context model taking as input the quantized prediction and a 
(very complex) context and outputting a new prediction.  
Both programs use other techniques to improve compression. 
They use partial update exclusion. When a character is 
counted in some context, it is counted with a weight of 1/2 in 
the next lower order context. Also, when computing symbol 
probabilities, it performs a weighted averaging with the 
predictions of the lower order context, with the weight of the 
lower order context inversely proportional to the number of 
different higher order contexts of which it is a suffix.  
Statistics are stored in a tree which grows during modeling. 
When the memory limit is reached, the tree is discarded and 
rebuilt from scratch. Optionally, the tree may be partially rebuilt 
before modeling resumes.  
Shown below are compressed sizes of the Calgary corpus as 
a tar file and separate files. Compression and decompression 
times are the same. Option -o16 means use maximum order 
16. -m256 says use 256 MB memory. -r1 partially rebuilds the 
model after disarding it when memory is used up, which 
improves compression.  
 

Compressor      Options     calgary.tar  14 files   Time 

----------- --------------   ---------   --------  ------- 

ppmd J      -o16 -m256 -r1    754,243    740,737    2 sec 

ppmonstr J  -o16 -m256 -r1    674,704    668,459    8 sec 

durilca 0.5 -o128 -m256       672,752    666,216   10 sec 

 
4.3. Context Mixing 

Context mixing algorithms based on the PAQ series are top 
ranked on many benchmarks by size, but are very slow. These 
algorithms predict one bit at a time (like DMC) except that there 
are multiple models making independent predictions which are 
then combined by weighed averaging. Often the result is that 
the combined prediction is better than any of the individual 
predictions that contribute to it.  
PPM and DMC are based on the premise that the longest 
context for which statistics is available is the best predictor. 
This is usually true for text but not always the case. For 
example, in an audio file, a predictor would be better off 
ignoring the low order bits of the the samples in its context 
because they are mostly noise. For image compression, the 
best predictors are the neighboring pixels in two dimensions, 
which do not form a contiguous context. For text, we can 
improve compression using some contexts that begin on word 
boundaries and merge upper and lower case letters. In data 
with fixed length records such as spreadsheets, databases or 
tables, the column number is a useful context, sometimes in 
combination with adjacent data in two dimensions. PAQ based 
compressors may have tens or hundreds of these different 
models to predict the next input bit.  
A fundamental question is how do we combine predictions? 
Suppose you are given two predictions pa = P(y=1|A) and pb = 
P(y=1|B), probabilities that the next bit y will be a 1 given 
contexts A and B. Assume that A and B have occurred often 
enough for the two models to make reliable guesses, but that 
both contexts have never occurred together before. What is p = 
P(Y=1|A,B)?  
Probability theory does not answer the question. It is possible 
to create sequences where p can be anything at all for any pa 
and pb. For example, we could have pa=1, pb=1, p=0. But 
intuitively, we should do some kind of averaging or weighted 
averaging. For example, if we wish to estimate P(car accident | 
dark and raining) given P(car accident | dark) and P(car 
accident | raining), we would expect the effects to be additive.  
In most PAQ based algorithms, there is a procedure for 
evaluating the accuracy of models and adjusting the weights to 
favor the best ones. Early versions used fixed weights.  
 
4.3.1. Linear Mixing 

In PAQ6 (Mahoney, 2005a), a probability is expressed as a 
count of zeros and ones. Probabilities are combined by 
weighted addition of the counts. Weights are adjusted in the 
direction that minimizes coding cost in weight space. Let n0i 
and n1i be the counts of 0 and 1 bits for the i'th model. The 
combined probabilities p0 and p1 that the next bit will be a 0 or 
1 respectively, are computed as follows:  

S0 = Îµ + Î£i win0i = evidence for 0 
S1 = Îµ + Î£i win1i = evidence for 1 
S = S0 + S1 = total evidence 
p0 = S0/S = probability that next bit is 0 
p1 = S1/S = probability that next bit is 1 

where wi is the non-negative weight of the i'th model and Îµ is 
a small positive constant needed to prevent degenerate 
behavior when S is near 0.  
The optimal weight update can be found by taking the partial 
derivative of the coding cost with respect to wi. The coding cost 
of a 0 is -log p1. The coding cost of a 1 is -log p0. The result is 
that after coding bit y (0 or 1), the weights are updated by 
moving along the cost gradient in weight space:  

wi := max[0, wi + (y - pi)(S n1i - S1 ni) / S0 S1] 

Counts are discounted to favor newer data over older. A pair of 
counts is represented as a bit history similar to the one 
described in section 4.1.3, but with more aggressive 
discounting. When a bit is observed and the count for the 
opposite bit is more than 2, the excess is halved. For example 
if the state is (n0, n1) = (0, 10), then successive zero bits will 
result in the states (1, 6), (2, 4), (3, 3), (4, 2), (5, 2), (6, 2).  



 
4.3.2. Logistic Mixing 

PAQ7 introduced logistic mixing, which is now favored 
because it gives better compression. It is more general, since 
only a probability is needed as input. This allows the use of 
direct context models and a more flexible arrangement of 
different model types. It is used in the PAQ8, LPAQ, PAQ8HP 
series and in ZPAQ.  
Given a set of predictions pi that the next bit will be a 1, and a 
set of weights wi, the combined prediction is:  

p = squash(Î£i wi stretch(pi))  

where  
stretch(p) = ln(p) / ln(1-p) 
squash(x) = stretch

-1
(x) = 1/(1 + e

-x
) 

The probability computation is essentially a neural network 
evaluation taking stretched probabilities as input. Again we find 
the optimal weight update by taking the partial derivative of the 
coding cost with respect to the weights. The result is that the 
update for bit y (0 or 1) is simpler than back propagation (which 
would minimizes RMS error instead).  
wi := wi + Î» (y - p) stretch(pi)  
where Î» is the learning rate, typically around 0.01, and (y - p) 
is the prediction error. Unlike linear mixing, weights can be 
negative.  
Compression can often be improved by using a set of weights 
selected by a small context, such as a bytewise order 0 
context.  
In PAQ and ZPAQ, squash() and stretch() are implemented 
using lookup tables. In PAQ, both output 12 bit fixed point 
numbers. A stretched probability has a resolution of 2

-8
 and 

range of -8 to 8. Squashed probabilities are multiples of 2
-12

. 
ZPAQ represents stretched probabilities as 12 bits with a 
resolution of 2

-6
 and range -32 to 32. Squashed probabilities 

are 15 bits as an odd multiple of 2
-16

. This representation was 
found to give slightly better compression than PAQ.  
ZPAQ allows different components (models and mixers) to be 
connected in arbitrary ways. All components output a stretched 
probability, which simplifies the mixer implementation. ZPAQ 
has 3 types of mixers:  

 AVG performs weighted averaging of two (stretched) 
predictions with fixed, user specified weights that add to 1.  

 MIX2 is like AVG except that weights are updated with the 
constraint that they add to 1. The user specifies Î» and a 
context to select a pair of weights.  

 MIX is like MIX2 except that it takes any number of inputs 
and does not constrain the weights to add to 1. A 2 input MIX 
often gives better compression than a MIX2.  

Mixer weights in PAQ are 16 bit signed values to facilitate 
vectorized implementation using MMX/SSE2 parallel 
instructions. In ZPAQ, 16 bits was found to be inadequate for 
best compression. Weights were expanded to 20 bit signed 
values with range -8 to 8 and precision 2

-16
.  

 

4.3.3. Secondary Symbol Estimation (SSE) 
SSE (secondary symbol estimation) is implemented in all PAQ 
versions beginning with PAQ2. Like in ppmonstr, it inputs a 
prediction and a context and outputs a refined prediction. The 
prediction is quantized typically to 32 or 64 values on a 
nonlinear scale with finer resolution near 0 and 1 and 
sometimes interpolated between the two closest values. On 
update, one or both values are adjusted to reduce the 
prediction error, typically by about 1%. A typical place for SSE 
is to adjust the output of a mixer using a low order (0 or 1) 
context. SSE components may be chained in series with 
contexts typically in increasing order. Or they may be in parallel 
with independent contexts, and the results mixed or averaged 
together. The table is initialized so that the output prediction is 
equal to the input prediction for all contexts.  
SSE was introduced to PAQ in PAQ2 in 2003 with 64 
quantization levels and no interpolation. Later versions used 32 

levels and interpolation with updates to the two nearest values 
above and below. In some versions of PAQ, SSE is also known 
as an APM (adaptive probability map).  
ZPAQ allows a SSE to be placed anywhere in the prediction 
sequence with any context. Recall that ZPAQ probabilities are 
stretched by mapping to ln(p/(1-p)) as a 12 bit fixed point 
number in the range -32 to +32 with resolution 1/64. The SSE 
input prediction is clamped and quantized to an odd multiple of 
1/2 between -15.5 and 15.5. The low 6 bits serve as an 
interpolation weight. For example, if stretch(p) = 2.7, then the 
two table entries are selected by below=2.5 and above=3.5, 
and the interpolation weight is 0.2. Then the output prediction 
is SSE[context][below]*(1-w) + SSE[context][above]*w. Upon 
update with bit y, the table entry nearest the input prediction 
(SSE[context][below] in this example) is updated by reducing 
the prediction error (y - output) by a user specified fraction.  
There are other possibilities. CCM, a context mixing 
compressor by Christian Martelock, uses a 2 dimensional SSE 
taking 2 quantized predictions as input.  
 
4.3.4 Indirect SSE (ISSE) 
ISSE (indirect secondary symbol estimation) is a technique 
introduced in paq9a in Dec. 2007 and is a component in ZPAQ. 
The idea is to use SSE as a direct prediction method rather 
than to refine an existing prediction. However, SSE does not 
work well with high order contexts because the large table size 
uses too much memory. More generally, a large model with 
lots of free parameters (each table entry is a free parameter) 
will overfit the training data and have no predictive power for 
future input. As a general rule, a model should not be larger 
than the input it is trained on.  
ISSE does not use a 2-D table. Instead it first maps a context 
to a bit history as with an indirect context map. Then the 8-bit 
bit history is used as a context to select the pair of weights for 
a 2 input mixer taking the input prediction and a fixed constant 
as its two inputs. The weights are initialized to (1.0, 0.0) 
meaning that the initial output prediction is equal to the input.  
PAQ9A and the default compression mode of ZPAQ both start 
with an order 0 model prediction and refine it using a chain of 
ISSE components in increasing order.  
In ZPAQ, the weights are 20 bit signed, fixed point numbers 
with range -8 to 8 and precision 2

-16
 like in a MIX. The fixed 

input is 4.0 and the learning rate is fixed at Î» = 2
-8

.  
 
4.3.5. Match Model 
A match model finds the last occurrence of a high order 
context and predicts whatever symbol came next. The 
accuracy of the prediction depends on the length of the context 
match. Longer matches generally give more confidence to the 
prediction. Typically a match model of order 6-8 is mixed with 
lower order context models. A match model is faster and uses 
less memory than a corresponding context model but does not 
model well for low orders.  
Match models are used in PAQ and ZPAQ. They consist of a 
rotating history buffer and a hash table mapping contexts to 
pointers into the buffer. In ZPAQ, a pointer to the match is 
maintained until a mismatching bit is found. The model will then 
look for a new match at the start of the next byte. On each byte 
boundary, the buffer is updated with the modeled byte and the 
hash table is updated so that the current context hash points to 
the end of the buffer. ZPAQ allows both the hash table size 
and buffer size to be user specified (as powers of 2). For best 
compression, the history buffer should be as large as the input 
(if this is practical) and the hash table size is typically 1/4 of 
this. Because each pointer is 4 bytes, both data structures use 
the same amount of memory.  
Match models in PAQ maintain multiple context hashes of 
different orders and multiple pointers into the buffer. The 
prediction is indirect by mapping the match length to a 
prediction through a direct context model. ZPAQ uses a 
simpler match model with just one pointer and one hash, 
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although it is possible to have multiple, independent match 
models. The prediction for a match of L bytes (or 8L bits) is that 
the next bit will be the same with probability 1 - 1/8L.  
The user may specify the context length by using a rolling 
hash that depends on the desired number of characters. If h is 
the context hash, c is the input byte, then the update:  

h = h*((2*k+1) << m) + c;  

specifies an order ceil(n/m) context hash for a hash table size 
of 2

n
 and any k. For example, the hash update "h=h*40+c;" (m 

= 3) is an order 6 context hash for a table size of 2
18

. Only the 
low 18 bits of h would be used to index the hash table of this 
size, and these bits depend only on the last 6 values of c.  
 
4.3.6 PAQ Models 

The high compression ratio (and slow speed) in PAQ comes 
from using many different context models for different types of 
data. These are described in historical order.  
Schmidhuber and Heil (1996) developed an experimental 
neural network data compressor. It used a 3 layer network 
trained by back propagation to predict characters from an 80 
character alphabet in text. It used separate training and 
prediction phases. Compressing 10 KB of text required several 
days of computation on an HP 700 workstation.  
Mahoney (2000) made several improvements that made 
neural network compression practical.  

 The neural network predictes one bit at a time instead of 
one character.  

 The training is online, eliminating multiple passes.  

 The first layer of the neural network is replaced by a hash 
function that selects one neuron per context for each of the 
orders 1 through 5.  

These changes make the algorithm about 10
5
 times faster, 

mainly because only a few neurons (out of millions) are active 
at any one time. To make the training online, it is necessary to 
add a pair of counters to each weight (to count 0 and 1 bits) so 
that the learning rate is initially large. The rate decreases in 
inverse proportion to the smaller of the two counts.  
There are 3 versions: P5, P6, and P12. P5 uses 256 KB 
memory to represent 5 orders using 2

16
 input neurons (each 

representing a context hash) and one output (the bit 
prediction). P6 uses 2

20
 input neurons. P12 is the same size as 

P6 but adds a whole word model. This context hash depends 
only on alphabetic characters mapped to lower case, and is 
reset after a nonalphabetic character. It improves compression 
of text files.  
In PAQ1 (Mahoney, 2002), it was realized that the counts 
alone could be used to make predictions, so the weights were 
eliminated. Predictions are combined by adding the 0 and 1 
counts associated with each context. Each counter is 1 byte.  
PAQ2 added SSE by Serge Osnach in May 2003. It uses 64 
quantization levels without interpolation.  
PAQ3 modified SSE to use 32 levels with interpolation in Sept. 
2003.  
PAQ3N by Serge Osnach in Oct. 2003 added sparse models: 
three order-2 models that skipped 1, 2, or 3 bytes of context 
between the two context bytes. This improves compression of 
some binary files.  
PAQ4 (Nov. 2003) uses adaptive linear weighting of models as 
described in section 4.3.1. It also introduced a record model. It 
identifies structures that repeat at regular intervals, as found in 
spreadsheets, tables, databases, and images, and adds 
contexts of adjacent bytes in two dimensions.  
PAQ5 (Dec. 2003) has some minor improvements over PAQ4, 
including word models for text, models for audio and images, 
an improved hash table, and modeling of run lengths within 
contexts. It uses two mixers with different contexts to select 

their weights. The two mixer outputs are averaged together. It 
uses about 186 MB of memory.  
PAQ6 (Jan. 2004) adds models for x86 code (modeling 
jump/call addresses) and CCITT images and more aggressive 
discounting of opposing bit counts. It takes options allowing up 
to 1616 MB memory. It is the basis of a number of forks and 
dozens of versions. An early version won the Calgary 
challenge. Many other models and optimizations were added 
by Berto Destasio, Johan de Bock, David A. Scott, Fabio 
Buffoni, Jason Schmidt, Alexandar Ratushnyak (PAQAR), 
Przemyslaw Skibinski (PASQDA, text preprocessing), Rudi 
Cilibrasi, Pavel Holoborodko, Bill Pettis, Serge Osnach, and 
Jan Ondrus.  
PAQAR (v1.0 to 4.0, May-July 2004) by Alexander Ratushnyak 
is a PAQ6 fork which is the basis of several winning 
submissions to the Calgary Challenge. The primary difference 
is a greatly increased number of mixers and SSE chains.  
PAQ7 (Dec. 2005) was a complete rewrite. It uses logistic 
mixing rather than linear mixing, as described in section 4.3.2. 
It has models for color BMP, TIFF, and JPEG images. The 
BMP and TIFF models use adjacent pixels as context. JPEG is 
already compressed. The model partially undoes the 
compression back to the DCT (discrete cosine transform) 
coefficients and uses these as context to predict the Huffman 
codes.  
PAQ8A (Jan. 2006) adds a E8E9 preprocessor to improve 
compression of x86 (EXE and DLL) files. The preprocessor 
replaces relative CALL and JMP addresses with absolute 
addresses, which improves compression because an address 
may appear multiple times. Many other compressors use this 
technique.  
PASQDA (v1.0-v4.4, Jan. 2005 to Jan. 2006) is a fork by 
Przemyslaw Skibinski. It adds an external dictionary to replace 
words in text files with 1 to 3 byte symbols. This technique was 
used successfully in the Hutter Prize and in the top ranked 
programs in the large text benchmark. PAQ8A2, PAQ8B, 
PAQ8C, PAQ8D, PAQ8E, and PAQ8G (Feb. to Mar. 2006) 
also use this technique, as does PAQAR 4.5 by Alexander 
Ratushnyak.  
PAQ8F (Feb. 2006) adds a more memory efficient context 
model and a new indirect model: The byte history within a low 
order context is modeled by another low order context.  
PAQ8L (Mar. 2006) adds a DMC model. Its predictions are 
mixed with those of other models.  
As of Feb. 2010, development remains active on the PAQ8 
series. There have been hundreds of versions with 
improvements and additional models. The latest is 
PAQ8PX_V67. Most of the improvements have been for file 
types not included in the Calgary corpus such as x86, JPEG, 
BMP, TIFF, and WAV.  
A benchmark for the Calgary corpus is given below for 
versions of PAQ from 2000 to Jan. 2010 showing major code 
changes. About 150 intermediate versions with minor 
improvements have been omitted. Older programs marked with 
* were benchmarked on slower machines such as a 750 MHz 
Duron and have been adjusted to show projected times on a 
2.0 GHz T3200, assumed to be 5.21 times faster. Sizes 
marked with a D use an external English dictionary that must 
be present during decompression. The size shown does not 
include the dictionary, so it is artificially low. However, including 
it would give a size artificially high because the dictionary is not 
extracted from the test data. All versions of PAQ are archivers 
that compress in solid mode, exploiting similarities between 
files. Decompression time is about the same as compression 
time.  
 

 

 

 

Compressor        Calgary  Seconds  Memory   Date    Author     Major changes 

----------        -------  -------  ------ --------  ------     -------------------- 
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P5                992,902     6.1* 256 KB      2000  Mahoney    64K x 1 neural network 

P6                841,717     7.4*  16 MB      2000  Mahoney    1M neurons 

P12               831,341     7.5*  16 MB      2000  

Mahoney    Word context model 

PAQ1              716,704    13*    48 MB      2002  Mahoney    Linear mixing with fixed weights 

PAQ2              702,382    18*    48 MB  May 2003  Osnach     SSE 

PAQ3              696,616    15*    48 MB  Sep 2003  Mahoney    Interpolated SSE 

PAQ3N             684,580    30*    80 MB  Oct 2003  Osnach     Sparse models 

PAQ4              672,134    43*    84 MB  Nov 2003  Mahoney    Adaptive mixer weights, record models 

PAQ5              661,811    70*   186 MB  Dec 2003  Mahoney    Models for text, audio, images, runs, 2 mixers 

PAQ6  -6          648,892    99*   202 MB  Jan 2004  Mahoney    Models for PIC, x86 

PAQAR 4.0 -6      604,254   408*   230 MB  Jul 2004  Ratushnyak Many mixers and SSE chains 

PAQ7 -5           611,684   142*   525 MB  Dec 2005  Mahoney    Logistic mixing, image models 

PAQ8A -4          610,624   152*   115 MB  Jan 2006  Mahoney    E8E9 preprocessor 

PASQDA 4.4 -7   D 571,011   283*   470 MB  Jan 2006  Skibinski  PAQ7 + external dictionary 

PAQAR 4.5 -5    D 570,374   299*   191 MB  Feb 2006  Ratushnyak PAQAR + external dictionary 

PAQ8F -6          605,650   161*   435 MB  Feb 2006  Mahoney    Bytewise indirect model, memory tuning 

PAQ8L -6          595,586   368    435 MB  Mar 2007  Mahoney    DMC model 

PAQ8PX_V67 -6     598,969   469    421 MB  Jan 2010  Ondrus     Improved JPEG, TIFF, BMP, WAV models 

 
Since 2007, development has contined on PAQ. In addition to 
PAQ8PX, there are 3 additional forks, no longer under active 
development.  

 PAQ8HP by Alexander Rathusnyak, a basis for the Hutter 
Prize. The series was optimized for this data and the large 
text benchmark. It uses a dictionary transform based on 
XWRT which replaces words from a dictionary with 1 to 3 
byte codes. The dictionary for the paq8hp series is optimized 
for these benchmarks, which is allowed under the rules. 
There were 12 versions from Aug. 2006 through May 2007.  

 LPAQ by Matt Mahoney with later versions by Alexander 
Ratushnyak. This was a "lite" PAQ, faster but with less 
compression. Later versions were tuned for text. It includes a 
mix of contexts of different orders and a match model. There 
were 24 version from July 2007 through Feb. 2009.  

 PAQ9A (Dec. 2007) was an experiment in LZP 
preprocessing followed by chained ISSE modeling. 
Compression is similar to early versions of LPAQ. The LZP 
preprocessor removes long redundant strings. It includes 
sparse and text models but no match model because high 
order contexts were removed.  

 
4.3.7. ZPAQ 

Of the hundreds of PAQ versions, no program can 
decompress files compressed by any other version. The goal 
of the proposed ZPAQ standard is to solve this problem. It 
specifies a format in which a description of the compression 
algorithm is stored in the compressed archive. The 
specification includes a reference decoder.  
The specification does not describe the compression 
algorithm. However, several compression programs and 
models are available on the ZPAQ page. There is a ZPAQ 
program that takes a configuration file to describe the 
compression algorithm, as well as other programs like ZPIPE 
that use a fixed compression algorithm. All of these produce 
files that can be decompressed with the reference decoder or 
by any of these programs. The standard was published in Mar. 
2009 by Matt Mahoney.  
ZPAQ describes an archive format, although it may be used 
for single file compression or memory to memory compression. 
A compressed stream consists of a sequence of blocks that 
are independent and can be reordered. Each block starts with 
a header that describes the decompression algorithm. A block 
consists of a sequence of compressed segments that must be 
decompressed in sequence from the start of the block. A 
segment may be a file or a part of a file. Each segment has an 
optional file name, an optional comment (file size, timestamp, 
etc.), and ends with an optional 20 byte SHA-1 checksum. If 
the file name is omitted, then the decompresser must supply it.  
An algorithm description consists of a network of components 
(each making a prediction), a program that computes the 
bytewise contexts for each component, and an optional 
program that post-processes the output. Both programs are 
written in a language called ZPAQL which is compiled or 
interpreted by the decompresser. If the post-processing 

program is present, then it is appended to the front of the first 
uncompressed segment and compressed along with its input 
data. If not, then the data is compressed directly with a one 
byte header to indicate its absence.  
Up to 255 components are placed in an array. Each 
component in the model inputs a context hash and possibly the 
predictions of earlier components, and outputs a stretched 
prediction. The output of the last component is squashed and 
used to arithmetic code the data one bit at a time. The 
components are as follows:  

 CONST - outputs a fixed prediction in the stretched range -
16 to 16 in increments of 1/16.  

 CM - a direct context model (section 4.1.2). Inputs a 
context and outputs a prediction, which is then updated to 
reduce the prediction error. The table size (and thus the 
context size) may be any power of 2. The count limit, which 
controls the learning rate, ranges from 4 to 1020 in 
increments of 4.  

 ICM - an indirect context model (section 4.1.3). Maps a 
context to a bit history, which is mapped to a prediction. The 
size may be any power of 2 at least 64 bytes.  

 MATCH - (section 4.3.5). Predicts the next bit from the last 
matching context in the history buffer. The hash table size 
and buffer size may be any power of 2.  

 AVG - weighted average of any 2 predictions. The weight 
ranges from 0 to 1 in increments of 1/256.  

 MIX - (section 4.3.2). Adaptively averages predictions using 
weights selected by a context. Specifies a context size, a 
range of inputs, a learning rate in increments of 1/4096 up to 
1/16, and an 8 bit mask to turn on or off bits of the current 
byte in the order 0 context.  

 MIX2 - (section 4.3.2). Like a MIX but with any 2 inputs, 
and the weights constrained to add to 1.  

 SSE - (section 4.3.3). Maps a context and a prediction to a 
new prediction using a 2-D table. Specifies a context size, 
input prediction, and initial and maximum counts for the 
context model (0..255 and 4..1020 by 4 respectively) and a 
bit mask for the order 0 context like in a MIX or MIX2.  

 ISSE - (section 4.3.4). Maps a context and a prediction to a 
new prediction using a bit history to select the weights for a 2 
input mixer with the other input constant. Specifies a context 
size and input prediction.  

Contexts are computed by a ZPAQL program that is called 
once per modeled byte with that byte as input. The program 
places the context hashes in an array H of 32 bit unsigned 
values. Each element of H is the input for one component, 
beginning with H[0] for the first one. Only the low bits of the 
hash are used, depending on the table size of each 
component. Because each bit must be modeled, the context 
hashes are combined with the previous bits of the current byte. 
This is done by expanding the previous bits to a 9 bit value 
(ICM or ISSE) or 8 bits (all others) and adding it to the bytewise 
context.  
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ZPAQL is designed for fast execution rather than ease of 
programming. It resembles an assembly language instruction 
set. A ZPAQL program runs on a virtual machine with the 
following state, all initialized to 0 at the start of a block:  

 A 16 bit program counter.  

 32 bit registers A, B, C, D, R0 through R255. The 
accumulator A is used for input and the results of most 
computations.  

 A 1 bit flag F to hold the result of comparisons.  

 An array H of 32 bit values, indexed by D. The first 256 
elements of H hold computed contexts.  

 An array M of 8 bit values, indexed by B or C.  
The sizes of H and M are specified as powers of 2 in the block 
header. Most instructions are either 1 byte, or 2 bytes including 
a numeric operand. The instruction set is as follows:  

 Assignment, for example A=B meaning copy B into A. The 
left and right operands may be A, B, C, D, *B, *C, or *D. *B 
and *C mean the element of M addressed by the low bits of B 
or C (depending on the size of M). *D means an element of 
H. The right operand may also be a constant from 0 through 
255.  

 Arithmetic, for example, A+=B meaning add B to A. 
Operands are as above except that the left operand is always 
A. Operations are += -= *= /= %= &= |= ^= <<= >>= &~ with 
their usual meanings in C/C++. Division or mod by 0 is 0. &~ 
means &=~  

 Comparison < == > only. The left operand is A. The result 
goes in F.  

 Unary operations ++ (increment) -- (decrement) ! (bit 
compliment) <>A (swap with A), =0 (clear). The operand may 
be A, B, C, D, *B, *C, or *D, always written first as in B! to 
compliment the bits of B (B = ~B or B= -B-1;). A<>A is not 
valid.  

 HASH meaning A = (A + *B + 512) * 773, a convenient 
hashing function.  

 HASHD meaning *D = (*D + A + 512) * 773.  

 OUT meaning output A (used only in postprocessing).  

 HALT meaning end execution.  

 Conditional jumps such as JT -4 meaning jump back 4 
bytes (from the next instruction) if F is true. JF means jump if 
false. JMP is unconditional. The operand is -128 to 127.  

 Long jump LJ with a 2 byte operand 0 through 65535 from 
the start of the program.  

 Access to R0 through R255 for example R=A 5 meaning 
R5=A. Operations are A=R, B=R, C=R, D=R, R=A.  

The post-processor (called PCOMP), if it is present, is called 
once per decoded byte with that byte in the A register. At the 
end of each segment, it is called once more with -1 in A. The 
decompresser output is whatever is output by the OUT 
instruction.  
The context model (called HCOMP) is always present. It is 
called once per decoded byte. It puts its result in H. OUT has 
no effect. HCOMP sees as input the PCOMP code (if present) 
followed by a contiguous stream of segments with no separator 
symbols.  
The ZPAQ program is a development environment for writing 
and debugging models. It allows programs to be single stepped 
or run separate from compression. It accepts control 
statements IF/IFNOT-ELSE-ENDIF and DO-
WHILE/UNTIL/FOREVER and converts them to conditional 
jumps. It allows passing of numeric arguments and comments 
in parenthesis. If a C++ compiler is present, then ZPAQL code 
is compiled by converting it to C++ and then running it. 
Otherwise the code is interpreted. Compiling makes 
compression and decompression 2 to 4 times faster.  
The default configuration for both ZPAQ and ZPIPE is 
described by the file mid.cfg below.  
 

  (zpaq 1.07+ config file tuned for average compression. 

  Uses 111 * 2^$1 MB memory, where $1 is the first 

argument.) 

 

  comp 3 3 0 0 8 (hh hm ph pm n) 

    0 icm 5        (order 0...5 chain) 

    1 isse 13 0 

    2 isse $1+17 1 

    3 isse $1+18 2 

    4 isse $1+18 3 

    5 isse $1+19 4 

    6 match $1+22 $1+24  (order 7) 

    7 mix 16 0 7 24 255  (order 1) 

  hcomp 

    c++ *c=a b=c a=0 (save in rotating buffer M) 

    d= 1 hash *d=a   (orders 1...5 for isse) 

    b-- d++ hash *d=a 

    b-- d++ hash *d=a 

    b-- d++ hash *d=a 

    b-- d++ hash *d=a 

    b-- d++ hash b-- hash *d=a (order 7 for match) 

    d++ a=*c a<<= 8 *d=a       (order 1 for mix) 

    halt 

  post 

    0 

  end 

 
The comment about $1 means that the model can be run with 
additional memory to improve compression. For example:  
 

  zpaq ocmid.cfg archive files... 

 
will compress with 111 MB memory, and  
 

  zpaq ocmid.cfg,3 archive files... 

 
will compress with 111 * 2

3
 = 888 MB memory. Decompression 

requires the same amount. The effect of ",3" is to make 
substitutions like "$1+17" with 20 throughout the configuration 
file. Up to 9 parameters (to $9) are allowed.  
The command "oc" means optimize (compile the ZPAQL into 
C++) and compress. If the "o" is dropped then no external C++ 
compiler is required, but compression and decompression 
takes twice as long.  
The configuration file is divided into 3 sections. COMP 
describes the arrangement of components. HCOMP contains 
ZPAQL code that computes the contexts and puts them in H. 
POST 0 indicates that there is no post-processing.  
COMP is followed by 5 arguments: hh, hm, ph, pm, n. hh and 
hm specify the sizes of H and M in HCOMP as powers of 2 (2

3
 

= 8 each). ph and pm are 0 because these arrays are not used. 
(Their size is actually 1). n = 8 is the number of components. 
They must be numbered 0 through n-1 in the COMP section. 
Except for the line numbers, each token compiles to one byte 
of ZPAQL. (Thus, ZPAQ requires "A= 10" be written exactly 
like this and not "A=10" or "A = 10" to indicate it is a 2 byte 
instruction).  
The line  
  0 icm 5 

describes an indirect context model with a table size of 64 * 2
5
 

bytes. It takes its context from the low 15 bits of H[0]. The low 7 
bits index a table of 16 byte arrays, and the next 8 bits are the 
checksum to detect collisions. Since this is an order 0 context, 
H[0] is left at 0 and only the bitwise context (a 9 bit value) is 
used. The line  
  1 isse 13 0 

describes an indirect SSE using 64 * 2
13

 bytes taking its input 
from component number 0 and context from H[1]. The line  
  2 isse $1+17 1 

describes an indirect SSE using 64 * 2
$1+17

 bytes, where $1 is 
the argument passed to mid.cfg. For example, if the argument 
is 3, it uses 64 * 2

20
 bytes. $1 defaults to 0. It gets its input 

prediction from component 1 and its context from H[2]. The line  
  6 match $1+22 $1+24 

specifies a match model with a hash table size of 2
22

 and 
history buffer of size 2

24
 (taking 16 MB each if $1 is 0). Its 

context is H[6]. The line  
  7 mix 16 0 7 24 255 

specifies a mixer with 2
16

 sets of weights selected by the low 
16 bits of the context, taking as input predictions from the 
range of components 0 through 7-1, with a learning rate of 



24/4096, and no masking (AND the bitwise context with 255). 
The context is H[7].  
The HCOMP section computes the contexts and puts them in 
H. It puts order 0 through 5 context hashes in H[0] through 
H[5], an order 7 context in H[6] for the match model, and an 
unhashed order 1 context in bits 8..15 of H[7] for the mixer. It 
leaves bits 0..7 clear because the bitwise context will be added 
to this. This is not a concern for the other contexts because 
they are hashed.  
HCOMP is called once after modeling each byte with the byte 
in the A register. All state information except A and PC (which 
is reset to the first instruction) is preserved between calls.  
This program uses M as a rotating history buffer of 8 bytes (hm 
= 3) with the low 3 bits of C pointing to the last byte stored. It 
uses B as a working pointer to compute hashes and D as a 
pointer into H to store the result. The instructions  
  c++ *c=a b=c a=0 

increment C, store the input byte in M[C], copy C to B, and 
clear A.  
  d= 1 hash *d=a 

assigns 1 to D so that it points to H[1]. The hash instruction 
takes input from M[B] and combines it with A (0), so A now 
contains a hash of the last input byte. It is stored in H[D] = H[1] 
as an order 1 context for component 1. Subsequent 
instructions store order 2, 3, 4, 5, and 7 hashes in H[2] through 
H[6]. Note that the space in "d= 1" is required because it is a 2 
byte instruction. "a=0" doesn't require this because there is a 
special 1 byte instruction for clearing a register.  
  d++ a=*c a<<= 8 *d=a 

computes the mixer context by putting the input byte (saved in 
*C) into bits 8..15 of D[7] and leaving the other bits at 0. 
Execution ends at the halt instruction.  
The following is the configuration max.cfg, which gets better 
compression but is slower.  
  (zpaq 1.07+ config file tuned for high compression 

(slow) 

  Uses 245 x 2^$1 MB memory, where $1 is the first 

argument. 

 

  comp 5 9 0 0 22 (hh hm ph pm n) 

    0 const 160 

    1 icm 5  (orders 0-6) 

    2 isse 13 1 (sizebits j) 

    3 isse $1+16 2 

    4 isse $1+18 3 

    5 isse $1+19 4 

    6 isse $1+19 5 

    7 isse $1+20 6 

    8 match $1+22 $1+24 

    9 icm $1+17 (order 0 word) 

    10 isse $1+19 9 (order 1 word) 

    11 icm 13 (sparse with gaps 1-3) 

    12 icm 13 

    13 icm 13 

    14 icm 14 (pic) 

    15 mix 16 0 15 24 255  (mix orders 1 and 0) 

    16 mix 8 0 16 10 255   (including last mixer) 

    17 mix2 0 15 16 24 0   (order -1) 

    18 sse 8 17 32 255     (order 0) 

    19 mix2 8 17 18 16 255 (order 0) 

    20 sse 16 19 32 255    (order 1) 

    21 mix2 0 19 20 16 0   (order -1) 

  hcomp 

    c++ *c=a b=c a=0 (save in rotating buffer) 

    d= 2 hash *d=a b-- (orders 1,2,3,4,5,7) 

    d++ hash *d=a b-- 

    d++ hash *d=a b-- 

    d++ hash *d=a b-- 

    d++ hash *d=a b-- 

    d++ hash b-- hash *d=a b-- 

    d++ hash *d=a b-- (match, order 8) 

    d++ a=*c a&~ 32 (case insensitive words) 

    a> 64 if 

      a< 91 if (if a-z) 

        d++ hashd d-- (update order 1 word hash) 

        *d<>a a+=*d a*= 20 *d=a (order 0 word hash) 

        jmp 9 

      endif 

    endif 

    (else not a letter) 

      a=*d a== 0 ifnot (move word order 0 to 1) 

        d++ *d=a d-- 

      endif 

      *d=0  (clear order 0 word hash) 

    (end else) 

    d++ 

    d++ b=c b-- a=0 hash *d=a (sparse 2) 

    d++ b-- a=0 hash *d=a (sparse 3) 

    d++ b-- a=0 hash *d=a (sparse 4) 

    d++ a=b a-= 212 b=a a=0 hash 

      *d=a b<>a a-= 216 b<>a a=*b a&= 60 hashd (pic) 

    d++ a=*c a<<= 9 *d=a (mix) 

    d++ 

    d++ 

    d++ d++ 

    d++ *d=a (sse) 

    halt 

  post 

    0 

  end 

 
The COMP section begins with an ISSE chain of orders 0 
through 6 like mid.cfg (with one extra ISSE). "const 160" 
provides a bias for the mixers that follow later. It outputs a fixed 
prediction of (160-128)/16 = 2 (stretched). The match model is 
order 8. As with mid.cfg, M is used as a rotating history buffer, 
but with a size of 2

hm
 = 2

9
 = 512. H is 2

hh
 = 32 elements. There 

are n = 22 components.  
Components 9 and 10 are an ISSE chain of word-oriented 
order 0 and 1 contexts for modeling text. These form a 
separate chain. Generally, the best compression is obtained 
when each ISSE context contains the lower order context of its 
input. Otherwise the models should be independent and mixed 
later. The context is formed by mapping upper and lower case 
letters together and discarding all other input. The order 0 
context is a hash of all of the letters since the beginning of the 
word or 0 if the last byte was not a letter. The order 1 hash 
combines this with the previous word.  
Components 11 through 13 are sparse order 1 contexts with a 
gap of 1 to 3 bytes between the context and the current byte. 
These are useful for modeling binary files.  
Component 14 is a model for CCITT binary fax images (PIC in 
the Calgary corpus). The image width is 1728 pixels or 216 
bytes, mapped one bit per pixel in MSB to LSB order (0=white, 
1=black). The context is the 8 bits from the previous scan line 
and 2 additional bits from the second to last scan line.  
Components 15 and 16 are order 1 and 0 mixers taking all 
earlier components as inputs. The second (order 0) mixer has 
a slower learning rate because it has fewer free parameters. 
Those two mixer outputs are mixed by the context free (size 0) 
MIX2 at 17. Its output is refined by the order 0 SSE at 18. The 
input and output of the SSE are mixed at 19. That prediction is 
refined by the order 1 SSE at 20. Finally the input and output of 
that SSE are mixed by the context free MIX2 at 21.  
The code for computing the order 0 and 1 word contexts in 
H[9..10] starts at  
    d++ a=*c a&~ 32 (lowercase words) 

This increments D to point to H[9] (the order 0 word model), 
retrieves the input byte saved in M[C], and clears bit 5 
(meaning a &= ~32) which converts lower case to upper case. 
Then  
    a> 64 if 

      a< 91 if (if a-z) 

tests if A is in the range A..Z (ASCII 65..90). The "if" is 
converted to a conditional jump to the matching "else" or 
"endif". If the test passes then the two word hashes are 
updated. The instruction *d<>a means swap H[D] with A. The 
hash in D[9] is a rolling hash but in D[10] is cumulative. JMP 9 
skips 9 bytes past the commented "else" clause. If the input is 
not a letter then H[9] is moved to H[10] and H[9] is cleared.  
The following results are for the Calgary corpus as a solid 
archive when supported. Compression is timed in seconds on 
a 2 GHz T3200.  
 

  Program             Size    Time   Memory (MB) 

  -------          ---------  ----   ------ 

  zip -9           1,020,831   0.6     0.5  

  ppmd               804,992   0.6     7.5  (calgary.tar) 

  ppmd -m256 -o16    754,243   1.3    62    (calgary.tar) 



  ppmonstr           669,497   8      51    (calgary.tar) 

  lpaq1 6            682,512   8     195    (calgary.tar) 

  lpaq9m 6           686,161   8     198    (calgary.tar) 

  paq9a -6           676,914  12     209  

  zpaq ocmid.cfg     699,474   8     111  

  zpaq ocmax.cfg     644,433  20     246  

  zpaq ocmax.cfg,1   644,320  20     477  

  paq8l -6           595,474 368     435  

  paq8px_v67 -6      598,969 469     421  

 
5. Transforms 
A transform converts data into a sequence of symbols which 
can be compressed with a simpler or faster model, or one 
using less memory, such as an order 0 context model. Those 
symbols still need to be modeled and coded as described in 
sections 4 and 3 respectively.  
A transform should ideally be a bijection. For each input, there 
should be exactly one possible representation. More often, the 
transform is an injection, and its inverse a surjection. An input 
may have more than one valid representation, either of which 
is transformed back to the original data during decompression. 
This increases the information content of the transformed data 
because the arbitrary choice of representation has to be 
modeled and coded, taking up space.  

 
5.1. Run Length Encoding 
A run length code replaces a long repeating sequence of 
identical symbols with two symbols representing a count and 
the value to be repeated. For example, the string "AAAAA" 
would be coded as (5,"A").  

 
5.2. LZ77 and Deduplication 
In LZ77 compression, duplicate strings in the input are 
replaced by pointers to previous occurrences. LZ77 is not a 
bijection. For example, given the string:  
  AB..BC..ABC 

"ABC" could be coded as:  

 a pointer to AB, and literal C,  

 a literal A and pointer to BC,  

 or 3 literals, A, B, C.  
A pointer consists of an offset and a length. It is allowed for the 
copied string to overlap the output. For example "AAAAA" 
could be coded as a A,(-1,4) meaning write a literal "A" and 
then go back 1 and copy the next 4 bytes. Thus, LZ77 may 
also encode run lengths.  
LZ77 decompression is extremely fast, faster than 
compression. The compressor must search for matching 
strings, typically using a hash table or tree. The decompresser 
only needs to maintain an output buffer from which to copy 
repeated strings, and then write a copy of its output to the 
buffer.  
The name "LZ77" comes from Lempel and Ziv, who described 
it in a 1977 paper (Ziv and Lempel, 1977).  
 
5.2.1 LZSS 

LZSS (Lempel-Ziv-Storer-Szymanski, 1982) uses 1 bit flags to 
mark whether the next symbol is a literal or a pointer. LZSS is 
used in NTFS file compression in Windows when the folder 
property is set to store files compressed. Its primary goal is to 
be extremely fast (faster than disk access) rather than provide 
good compression. The exact format was not published. 
Rather, it was reverse engineered (in Russian) in 1998. 16 
literal/pointer flags are packed into 2 bytes. This is followed by 
16 symbols which are either 1 byte literals or 2 byte pointers. 
The offset is variable length with a maximum of 12 bits. Any 
remaining bits are allocated to the length, which has a 
minimum value of 3. Thus, after 2K of input, each pointer is a 
12 bit offset and a 4 bit length ranging from 3 to 18.  
Windows indicates that a compressed folder containing the 
Calgary corpus occupies 1,916,928 bytes. On the large text 
benchmark, the 1 GB text file enwik9 compresses to 636 MB, 
slightly larger than an order 0 coder and about twice the size of 

zip. Copying enwik9 between 2 uncompressed folders takes 41 
seconds on the test machine (a laptop with a 2.0 GHz T3200). 
Copying from a compressed folder to an uncompressed folder 
takes 35 seconds, i.e. decompression is faster than copying. 
Copying from an uncompressed folder to a compressed folder 
takes 51 seconds. This is equivalent to compressing the 
Calgary corpus in 0.03 seconds over the time to copy it.  
The NTFS implementation of LZSS is very similar to lzrw1-a 
implemented by Ross Williams in 1991. lzrw1-a uses a fixed 12 
bit offset and 4 bit length.  
 
5.2.2. Deflate 

The widely popular deflate format is used in zip and gzip and is 
supported by many other archivers. It is used internally in PNG 
images, PDF documents, and Java JAR archives. The format 
is documented in RFC 1951 (1996) and supported by the open 
source zlib library.  
In the deflate format, pointer offsets range from 1 to 32768 and 
length from 3 to 258. Literals and lengths are coded in a 286 
symbol alphabet which is Huffman coded followed by up to 5 
extra uncompressed bits of the length. A length code is 
followed by an offset from a 30 symbol Huffman coded 
alphabet followed by up to 13 extra uncompressed bits. 
Specifically the alphabets are as follows:  
 

  0..255 = literal byte 

  256 = end of data 

  257..264 = lengths 3..10 

  265..268 = lengths 11..18 followed by 1 extra bit 

  269..272 = lengths 19..34, 2 extra bits 

  273..276 = lengths 35..66, 3 extra bits 

  277..280 = lengths 67..130, 4 extra bits 

  281..284 = lengths 131..257, 5 extra bits 

  285 = length 258 

 
Lengths are followed by an offset coded from a 30 symbol 
alphabet:  
 

  0..3 = offset 1..4 

  4..5 = offset 5..8 followed by 1 extra bit 

  6..7 = offset 9..16, 2 extra bits 

  8..9 = offset 17..32, 3 extra bits 

  ... 

  28..29 = offset 16385..32768, 13 extra bits 

 
The format allows either a default or a custom Huffman code. 
The default code lengths are as follows:  
 

  Literal/length 

  0..143 = 8 bits 

  144..255 = 9 bits 

  256..279 = 7 bits 

  280..287 = 8 bits 

 

  Offset 

  0..29 = 5 bits 

 
If a custom Huffman table is used, then the table is transmitted 
as a sequence of code lengths. That sequence is itself 
compressed by run length encoding using another Huffman 
code to encode the literals and run lengths. It uses a 19 symbol 
alphabet:  
 

  0..15 = code lengths of 0..15 

  16 = copy the previous code 3..6 times, followed by 2 

extra bits 

  17 = copy 3..10 times, 3 extra bits 

  18 = copy 11..138 times, 7 extra bits 

 
The Huffman table for these codes are sent as a sequence of 
up to 19 3-bit numbers. This sequence is further compressed 
by reordering the sequence so that the values most likely to be 
0 (not used) are at the end, and sending the sequence only up 
to the last nonzero value. A 4 bit number indicates the 
sequence length. The order is: 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 
11, 4, 12, 3, 13, 2, 14, 1, 15. All Huffman codes are packed in 
LSB to MSB order.  
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zip and gzip take an option -1 through -9 to select compression 
level at the expense of speed. All options produce compressed 
data in deflate format which decompresses at the same speed 
(much faster than compression) with the same algorithm. The 
difference is that with the higher options, the compressor 
spends more time looking for encodings that compress better. 
A typical implementation will keep a list of 3 byte matches (the 
shortest allowed) in a hash table and test the following data to 
find the longest match. With a higher option, the compressor 
will spend more time searching. It is also sometimes possible 
to improve compression by encoding a literal even if a match is 
found, if it results in a longer match starting at the next byte. 
Such testing also increases compression time. kzip performs 
an extreme level of optimizations like this. Compressed sizes 
and compression times on a 2.0 GHz T3200 are shown below 
for the 14 file Calgary corpus.  
 

  Program       Size      Time 

  ------      ---------   ---- 

  zip -1      1,194,720   .17 sec. 

  zip -2      1,151,711   .23 

  zip -3      1,115,078   .25 

  zip -4      1,072,909   .25 

  zip -5      1,041,083   .33 

  zip -6      1,028,171   .40 (default) 

  zip -7      1,025,244   .42 

  zip -8      1,021,607   .50 

  zip -9      1,020,831   .67 

  kzip          978,707 24.21 

  unzip                   .10 

 
5.2.3. LZMA 

LZMA (Lempel Ziv Markov Arithmetic) is the native 
compression mode of 7-zip. Compression is improved by using 
a longer history buffer (selectable up to 4 GB) which allows 
more matches to be found. Symbols are arithmetic coded using 
a context model.  
 
5.2.4. LZX 

LZX is an LZ77 variant used in Microsoft CAB files and 
compressed help (CHM) files. It uses a history buffer of up to 2 
MB and Huffman coding. To improve compression, it uses 
shorter codes to code the 3 most recent matches.  
 
5.2.5, ROLZ and LZP 

The idea of using shorter codes for recent matches can be 
extended. The compressor for lzrw3 builds a dictionary (a hash 
table) of pointers into the history buffer as usual to find 
matching strings, but instead of coding the offset, it codes the 
index into the table. The decompresser builds an identical hash 
table from the data it has already decompressed, then uses the 
index to find the match. The length is coded as usual.  
ROLZ (reduced offset LZ) extends this idea further by 
replacing the large hash table with many smaller hash tables 
selected by a low order context. This reduces the size of the 
offset, although it can sometimes cause the best match to be 
missed. ROLZ was implemented in WinRK.  
The extreme case of ROLZ is to use one element per hash 
table. In this case, only a literal or length must be coded. This 
algorithm is called LZP. It was first described by Charles Bloom 
in 1995. LZP works best with a high order context. Thus, it is 
often used as a preprocessor to a low or moderate order 
context model, rather than a fast order 0 model like LZ77.  
 
5.2.6. Deduplication 

Deduplication is the application of LZ77 to a file system rather 
than a data stream. The idea is to find duplicate files or files 
containing large blocks of data duplicated elsewhere, and 
replace them with pointers.  

 
5.3. LZW and Dictionary Encoding 
Dictionary methods substitute codes for common strings from 
a table or dictionary. A dictionary code may be, fixed, static or 
dynamic. In the fixed case, the dictionary is specified as part of 

the algorithm. In the static case, the compressor analyzes the 
input, constructs a dictionary, and transmits it to the 
decompresser. In the dynamic case, both the compressor and 
decompresser construct identical dictionaries from past data 
using identical algorithms.  
 
5.3.1. LZW 

LZW (Lempel-Ziv-Welch) is a dynamic dictionary method. It is 
used by the UNIX compress program, GIF images, and is one 
of the compressed modes in TIFF images. The algorithm was 
patented by both Sperry (later Unisys) in 1981 and by IBM and 
1983 when the USPTO did not realize that they were the same 
algorithm. Unisys was criticized for waiting until GIF became an 
established standard before demanding royalties from makers 
of software that could read or write GIF images. Both patents 
are now expired.  
LZW starts with a dictionary of 256 1-byte symbols. It parses 
the input into the longest possible strings that match a 
dictionary entry, then replaces the string with its index. After 
each encoding, that string plus the byte that follows it is added 
to the dictionary. For example, if the input is ABCABCABCABC 
then the encoding is as follows:  
 

   65 = A   (add AB to dictionary as code 256) 

   66 = B   (add BC as 257) 

   67 = C   (add CA as 258) 

  256 = AB  (add ABC as 259) 

  258 = CA  (add CAB as 260) 

  257 = BC  (add BCA 261) 

  259 = ABC (end of input) 

 
Dictionary codes grow in length as it becomes larger. When 
the size is 257 to 512, each code has 9 bits. When it is 513 to 
1024, each code is 10 bits, and so on. When the dictionary is 
full (64K = 16 bits), it is discarded and re-initialized.  
A Windows version of the UNIX compress program 
compresses the Calgary corpus to 14 files totaling 1,272,722 
bytes in 0.34 seconds and decompresses in 0.23 seconds.  
Other variants of LZW may use larger dictionaries, or may use 
other replacement strategies like LRU (least recently used), or 
other strategies for adding new symbols such as concatenating 
the last two coded symbols instead of a symbol plus the next 
byte.  
 
5.3.2. Dictionary Encoding 

Dictionary encoding improves the compression of text files by 
replacing whole words with symbols ranging from 1 to 3 bytes. 
Fixed English dictionaries are used in WinRK, durilca, and in 
some versions of PAQ such as PAsQDacc 4.3c -7, which 
compresses the Calgary corpus to 567,668 using a dictionary 
extracted from the corpus itself, but not included in the 
compressed size. It is, of course, possible to compress to 
arbitrarily small sizes using this technique. The extreme case is 
barf. It has a built in 14 word dictionary, one for each file of the 
Calgary corpus. When the compressor detects a match, it 
"compresses" the file to 1 byte, which the decompresser 
correctly expands.  
For this reason, the large text benchmark and contests like the 
Calgary challenge and Hutter prize include the size of the 
decompression program and all other files needed to 
decompress. Still, it may be useful to use a dictionary for one 
or more languages if the input is expected to contain text in 
those languages.  
Of more interest are static dictionaries. These are used by the 
top 3 programs on the large text benchmark (as of Feb. 2010), 
and in all of the Hutter prize winners. Some of the later Calgary 
challenge winners also use small dictionaries.  
 
5.3.2.1. Modeling Text 

Recall from section 1.4 that text compression is an AI problem. 
This can be seen by playing Shannon's character guessing 
game which he used to estimate that the entropy of written 
English is about 1 bpc (Shannon, 1950). Try partially covering 
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some text with your hand and guessing what letters come next 
from the earlier context, for example: "the cat caught a mo___". 
Humans can beat computers at the game because the 
prediction problem requires vast understanding of English and 
of the world. Nevertheless, some of the constraints of natural 
language can be modeled. These rules are categorized as 
follows:  

 lexical: "moqse" is wrong because it is not a word.  

 semantic: "moose" is wrong because it is not associated 
with things that a cat would chase.  

 syntactic or grammatical: "moves" is wrong because we 
expect "a" to be followed by a singular noun phrase.  

While playing the game, you will notice that useful contexts 
start on word boundaries. Thus, "a mo_" and "caught a mo_" 
are useful contexts, but "ght a mo_" is no more useful than the 
lower order "a mo_". Thus, text models in PAQ construct 
contexts that start on word boundaries.  
It should be irrelevant if a context spans a line break. Thus, 
word contexts in PAQ discard the characters between words. 
Furthermore, it should be irrelevant if the context is upper or 
lower case, because it does not change the meaning. Thus, 
there are word models that ignore case.  
Semantics can be modeled by associating each pair of words 
like (cat, mouse) with a co-occurrence frequency over a small 
window. Words that frequenly occur near each other tend to 
have related meanings. This can be modeled with a sparse 
order-1 word model, skipping one or more words in between 
the context and the predicted word. Many PAQ versions have 
sparse word models with small gaps of 1 to 3 words.  
For modeling semantics, it is useful to split text into 
"meaningful" units or morphemes if possible. For example, 
"moves" really has two independent parts, the stem "move" 
and suffix "s". Ideally these should be modeled as separate 
words.  
Grammar constrains text to make certain sequences more 
likely, such as (the NOUN) or (a ADJ NOUN). It is possible to 
learn the parts of speech by observing when words occur in 
similar contexts and grouping them. For example "the dog", 
"the cat", and "a dog" could be used to predict the unseen 
sequence "a cat". This works by grouping "the" and "a" into 
one semantic category and "dog" and "cat" into another 
category.  
A dictionary transform works by replacing the input text with a 
sequence of highly predictive symbols corresponding to 
morphemes, independent of capitalization and punctuation. 
This improves compression both by allowing simpler models to 
be used, and by reducing the size of the input, which improves 
speed and reduces pressure on memory. Compression can be 
improved further by grouping semantically or grammatically 
related words so that the compressor can merge them into 
single contexts by ignoring the low bits of dictionary codes. 
Care should be taken not to remove useful context, which can 
happen if a dictionary is too large or divides words in the wrong 
places. For example, coding "move" and "remove" as unrelated 
symbols would not help compression.  
5.3.2.2. Capitalization Modeling 

A capitalization model replaces upper case letters with a 
special symbol followed by a lower case letter. For example, 
"The" could be coded as "Athe" where "A" directs the 
decompresser to capitalize the next letter. Alternatively, a more 
sophisticated model might automatically capitalize the first 
letter after a period, and insert a special symbol to encode 
exceptions.  
5.3.2.3. Newline Modeling 

Because newlines are semantically equivalent to spaces, it is 
sometimes useful to replace then with spaces, and encode in a 
separate stream the information to put them back. A simple 
transform is space stuffing, where a space is inserted after 
every newline. For example, this has the effect of merging the 
order 4 contexts " the" and "\nthe" (where \n is a linefeed) by 
replacing the latter with "\n the". Space stuffing does not help 

with multi-word contexts that span lines. However the 
alternative is to remove context that could predict newlines, 
such as periods at the end of a paragraph.  
5.3.2.4. Word Encoding 

Word encoding is done in two passes. In the first pass, the text 
is parsed into words (sequences of A-Z, a-z, and possibly UTF-
8 characters in non-English alphabets) and counted. Words 
with counts below a threshold are discarded. In the second 
pass, words found in the dictionary are replaced with 1 or 2 
byte codes (or 3 bytes for large dictionaries). The dictionary is 
listed at the beginning of the output, followed by the encoded 
data. Words not found in the dictionary and non-letters are 
passed unchanged.  
Words are typically encoded with bytes from the part of the 
ASCII set that does not normally appear in text, namely 0..8, 
11..12, 14..31, and 127..255. If capitalization modeling was 
done, then 65..90 (A-Z) may also be used. If such bytes do 
appear, they must be preceded by an escape byte, designated 
as one of the above. The remainder of the alphabet may be 
used to encode words.  
XWRT (XML Word Reducing Transform) by Przemyslaw 
Skibinski in Oct. 2007 performs dictionary encoding. The 
dictionary is appended as a header to the output with one word 
per line in decreasing order of frequency. The most frequent 
words are encoded with one byte.  
5.3.2.5. Results 

The following table shows the effect of simple capitalization 
modeling (using "A" followed by lowercase), space stuffing, 
and word encoding using XWRT on book1 from the Calgary 
corpus on 4 compressors. The -f option selects the minimum 
word frequency for inclusion in the dictionary. The number in 
parenthesis shows the dictionary size that results. (The exact 
options are -o -l0 -c -s -n -w -m256 for xwrt 3.2 to turn off other 
transform options. There is no space or capitalization 
modeling).  
 

                    book1   zip -9     sr2    bzip2 -9 

ppmonstr  

                   -------  -------  -------  -------  ---

----   

  No transform     768,771  312,502  276,364  232,598  

203,247 

  Capitalization   785,101  311,696  275,124  231,594  

202,650 

  Space stuffing   785,393  313,640  275,161  229,988  

202,274 

  Both             801,723  312,856  273,864  229,861  

201,706 

 

  xwrt -f3 (4307)  366,323  265,721  246,897  233,928  

211,382 

  xwrt -f6 (2806)  378,289  267,522  246,760  231,675  

208,801 

  xwrt -f20 (789)  449,233  278,639  254,227  230,243  

204,897 

  xwrt -f100 (174) 542,670  290,268  262,575  228,904  

202,832 

 
The table shows that space stuffing and capitalization usually 
help, but that word encoding becomes less effective as the 
compression improves. It is nevertheless useful for 
compressing the large text benchmark where memory 
constraints are severe because it reduces the size of the input. 
The top 3 programs use it. Capitalization modeling is also 
useful, but space stuffing is not because line breaks are only 
used to separate paragraphs.  
XWRT is ranked sixth (as of Feb. 2010) on the large text 
benchmark when used with its built in LPAQ6 compressor. The 
optimal setting in this case is -f200 to select a dictionary size of 
about 40,000 words. It does slightly better (ranking fifth) as a 
preprocessor to ppmonstr with option -f64.  
paq8hp12 and drt|lpaq9m, both by Alexander Ratushnyak, are 
ranked second and third on the large text benchmark and are 
the basis of winning entries for the Hutter prize. These both 
use a custom dictionary of about 44,000 words. The higher 
frequency words are grouped semantically, such as "son" with 

http://en.wikipedia.org/wiki/Morpheme
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"daughter" and "monday" with "tuesday". Among the lower 
frequency words, they are grouped by common suffix 
(alphabetical order when reversed) to make the dictionary 
compress smaller.  
durilca_kingsize is the top ranked program on the large text 
benchmark, but only because it uses 13 GB of memory, vs. 2 
GB. It uses a dictionary of about 124,000 words. These are 
also grouped semantically, but by an automated process that 
clustered words in context space. The algorithm was not 
documented, but the idea is roughly to group words together if 
they are likely to appear in the same context.  

 
5.4. Symbol Ranking 
 
Symbol ranking, or move-to-front (MTF), is a transform in 
which the alphabet is maintained in a queue from newest to 
oldest and coded by its position. The idea is that the most 
recently seen symbol is the most likely to occur in the future.  
srank is a symbol ranking compressor by Peter Fenwick in 
1996. An order 3 context hash without collision detection is 
mapped to a queue of length 3 representing the 3 most 
frequently seen bytes in that context. These are Huffman 
coded with 1, 3, or 4 bits respectively. Long runs of first place 
bytes are run length encoded with 12 bits to encode the run 
length. Bytes not seen in the queue are modeled in an order 0 
pseudo-MTF queue using 7 bits for the first 32 positions and 12 
bits for the other 224. It is called "pseudo-MTF" because when 
a byte is observed, it is moved only about half way to the front 
with some random dithering. This is an optimization for speed. 
It allows a fast update of an index into the queue. The order 3 
hash table maximum size is 2

18
 queues (1 MB memory).  

sr2 is an improved (but slower) symbol ranking compressor by 
Matt Mahoney in Aug. 2007. An order 4 context hash is 
mapped to a table of 2

20
 3 byte MTF queues and a counter for 

consecutive first place hits ranging from 0 to 63. When the first 
place byte is observed, the counter is incremented. For all 
other values, the counter is reset to 1 if in the queue or 0 if not. 
The new value is pushed to the front of the queue and the 
others pushed back. For example, the sequence ABCCC 
would result in the queue (C,B,A,3) with C at the front. A 
subsequent B would result in (B,C,A,1). A subsequent D would 
result in (D,B,C,0).  
A byte is first Huffman coded and then arithmetic coded. The 
point of the Huffman code is to reduce the number of arithmetic 
coding operations for better speed. Suppose the queue 
contains (c1,c2,c3,n). The coding and next state is as follows:  
 

  Input    Code        (c1  c2  c3  n) next state 

  -----    ----        -------------------------- 

  Initial              (0,  0,  0,  0) 

    c1     0           (c1, c2, c3, min(n+1, 63)) 

    c2     110         (c2, c1, c3, 1) 

    c3     111         (c3, c1, c2, 1) 

  other c  10cccccccc  (c,  c1, c2, 0) 

 
The bits are coded using a direct context model with a count 
ranging from 2 to 128 (section 4.1.2). For n â‰¥ 4, the context 
is order 1 plus n plus the previous bits of the current symbol. 
For n < 4, the model is the same except order 2.  
The following comparison is for the Calgary corpus as 14 files 
compressed separately.  
 

Program       Size     Compr Decompression 

---------   ---------  ----  -------- 

srank -C8   1,281,984  0.20  0.20 sec. 

sr2           975,208  0.48  0.50 sec. 

 
During development, it was observed that an order 3 context 
sometimes compressed better on smaller files, but order 4 
works better on larger files. Increasing the hash table beyond 
2

20
 did not help much, in spite of the fact that more memory 

almost always helps any algorithm.  
Arithmetic decoding is slightly slower than encoding. Recall 
that the steps to compress are:  

1. predict next bit  
2. code the bit  
3. update the model  

For decompression:  
1. predict next bit  
2. decode the bit  
3. update the model  

Modern processes can reorder instructions and execute them 
in parallel. During compression, steps 2 and 3 are 
independent, so they can overlap. During decompression, the 
model cannot be updated until the bit has finished being 
decoded.  

 
5.5. Context Sorting (BWT) 
A Burrows-Wheeler Transform sorts the input by its right 
context. By bringing together characters with similar contexts, 
the transformed data can be more easily compressed with a 
fast adapting order 0 model. Shown below is a portion of the 
Burrows Wheeler transform of book1 from the Calgary corpus 
(with newlines converted to spaces for clarity). The column in 
bold is the BWT.  
 

BWT block --+    +--- Sorted on this column 

             \  / 

              VV 

  ing. Her culpability lay in her m 

  e of the instability of a woman ? 

  hat the desirability of her exist 

  tion, from inability to guide inc 

   husband's inability to meet the 

  nervous excitability, he returned 

  stimony, probability, induction - 

  le of respectability, were now si 

  of a ship's cabin, with wood slid 

   new riding-habit -- the most ele 

   mostly her habit hen excited, he 

  's virtuous habit of entering the 

   new riding-habit of myrtle-green 

  aracter and habit, and seemed so 

  e no riding-habit, looked around 

  besides the habitable inn itself, 

  ceived no inhabitant for the spac 

   ' by the inhabitants of Caster+ 

  ttle <P 61> habitation, and here 

  every human habitation, and the h 

  those old-inhabited walls. It was 

  ntly to old habits and usages, si 

  o imply his habitual reception of 

  rgrass, who habitually spoke on a 

  at everybody abjured her -- for w 

  osed all the able-bodied men upon 

  en the favourable-con+ junction s 

  ame to the stable-door and looked 

  d been answerable .! ' " We must 

 
The BWT is the column in bold. It is 

"...ptrnntbtchhhhhhhhhhhhhhh rtr...".  
BWT is best suited for stationary sources. For example, a 
sorted list of words would be compressed poorly because local 
rules (newline is followed by "A", later changing to "B") become 
spread throughout the transform. For these cases, separating 
different data types into independently compressed blocks can 
improve compression. Otherwise, the largest possible block 
size should be used.  
BWT compression depends on the alphabet order. Best 
compression is obtained when related symbols such as letters 
or digits that make similar predictions are grouped together. 
The ASCII character set already has this property, but is not 
optimal.  
 
5.5.1. Forward transform 

Compressors that use BWT are called context sorting or block 
sorting algorithms. A typical implementation is to divide the 
input into fixed sized blocks (as large as memory allows) and 
sort an array (of the same size) of pointers into the block. The 
sort order is the lexicographical order of the string to which it 
points, wrapping around to the beginning of the block if 

http://www.cs.auckland.ac.nz/%7Epeter-f/
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necessary. If each pointer is 4 bytes, then memory usage is 5 
times the block size.  
Typically a fast sorting algorithm is used, such as a radix sort. 
Sorting speed depends on the average number of bytes that 
must be tested in a string comparison. If the input is highly 
redundant, then sorting will be slow. The worst case is O(n

2
) 

for a radix sort. This problem can be avoided by preprocessing 
the input to remove high order statistics in the form of copies of 
long strings, such as with a high order LZP or LZ77. This can 
also make compression faster by making the block smaller. 
Another approach is to randomly flip a small fraction of the 
input bits and flip them back during decompression.  
A third approach is to use a Schindler transform, a variation in 
which the sort order is based on a truncated string comparison. 
However, this method is protected by patent 6,199,064 in the 
U.S. The patent expires Nov. 14, 2017.  
It is sometimes convenient to add a virtual "end of block" 
symbol with the value -1 before context sorting. This makes it 
unnecessary to wrap around to the beginning of the block to 
compare strings.  
 
5.5.2. Inverse transform 

It is rather surprising that a BWT block can be inverted to 
recover the original data. The only other information needed is 
the new position of the original first byte. We are given a BWT 
string BWT[0..n-1] of length n, and the location p (0 â‰¤ p < n) 
of the position of the first byte BWT[p]. The algorithm to output 
the original string is:  
  T = sort(BWT) 

  Repeat n times: 

    output BWT[p] 

    move p from the i'th location of c in T to the i'th 

location of c in BWT 

For example, suppose that BWT[0..5] = "NNBAAA" is the BWT 
of "BANANA". as shown:  
BWT  Sorted context 

   \/ 

   NABANA 

   NANABA 

   BANANA p=2 

   ABANAN 

   ANABAN 

   ANANAB 

Create T[0..5] = "AAABNN". We now have:  
            p 

        0 1 2 3 4 5 

  BWT = N N B A A A 

  T   = A A A B N N 

The steps are:  
  output BWT[2] = B 

  p is the third A in T. Move to p=5, the third A in BWT. 

  output BWT[5] = A 

  p is the second N in T. Move to p=1, the second N in 

BWT. 

  output BWT[1] = N 

  p is the second A in T. Move to p=4, the second A in 

BWT. 

  output BWT[4] = A 

  p is the first N in T. Move to p=0, the first N in BWT. 

  output BWT[0] = N 

  p is the first A in T. Move to p=3, the first A in BWT. 

  output BWT[3] = A. 

 
As an optimization, we may represented the sorted array T 
solely by the starting position of each of the 256 sequences of 
byte values, for example A=0, B=3, C=3,..., N=4, O=6. 
Furthermore, we can construct in advance a list NEXT[0..n-1] 
such that NEXT[p] is the next move for p. For example, 
NEXT[2] = 5 would be the first move. To build this list we scan 
BWT and use T to count the occurrence of each byte value.  
 

  for i in 0..n-1 do 

    NEXT[T[BWT[i]]++] = i 

 
In C++, the inverse BWT looks like this:  
 

  // Invert and output the BWT in bwt[0...n-1] starting at 

p 

  void invert_BWT(unsigned char *bwt, int n, int p) { 

 

    // Collect cumulative counts of bwt: 

    // t[i] = number of bytes < i 

    int t[257]={0}; // cumulative counts 

    for (int i=0; i<n; ++i) 

      ++t[bwt[i]+1]; 

    for (int i=1; i<257; ++i) 

      t[i]+=t[i-1]; 

    assert(t[256]==n); 

 

    // Build linked list 

    int *next=calloc(n, sizeof(int));  // linked list 

    assert(next);  // out of memory? 

    for (int i=0; i<n; ++i) 

      next[t[bwt[i]]++]=i; 

    assert(t[255]==n); 

 

    // Traverse and output list 

    for (int i=0; i<n; ++i) { 

      assert(p>=0 && p<n); 

      putc(bwt[p], out); 

      p=next[p]; 

    } 

    free(next); 

  } 

 
5.5.3. bzip2 

bzip2 is a popular open source BWT based file compressor 
developed in 1996 by Julian Seward. It takes an option -1 
through -9 to select a block size of 100 KB to 900 KB. -9 
generally gives the best compression. The compression 
algorithm is as follows:  

1. The input is run length encoded to remove some (not all) 
high order redundancy. Sequences of 4 to 255 repeated 
bytes are coded as the first 4 bytes followed by one byte 
(0..251) representing the remaining count. For example, 
"AAAAA" is coded as "AAAA",1.  
2. BWT.  
3. Move to front (section 5.4). Each byte is coded as its 
position in a queue, then moved to the front of the queue. 
Runs of identical characters thus become runs of zeros.  
4. Run length encoding of of zeros. The run length is coded 
in binary in LSB to MSB order by two symbols (RUNA, 
RUNB) that have values 1 and 2 (instead of 0 and 1). Runs of 
length 1 through 10 would be coded as 1, 2, 11, 21, 12, 22, 
111, 211, 121, 221.  
5. The symbols RUNA, RUNB, queue positions 1..255 (0 is 
always run length encoded) and end of data symbol are 
Huffman coded.  

bzip2 uses 2 to 6 Huffman tables, which are selected every 50 
symbols to make the code adaptive. The tables are kept in a 
MTF queue. The selection code is unary coded. A unary code 
for a number n is n 1 bits and a 0. For example, 4 = 11110.  
The Huffman tables are coded as a sequence of lengths. The 
lengths are delta coded, i.e. as the difference from the previous 
length. A difference is coded as 0 = 0, 10 = -1, 11 = +1, 
repeating as needed. A bitmap is used to mark unused queue 
selection codes, which are omitted from the sequence. The 
bitmap is divided into 16 16-bit words, where a 0 bit means the 
code is not used. If all 16 bits are 0, then the word is omitted. 
One additional 16 bit word is used to mark which words are 
omitted.  
The original bzip was arithmetic coded, which is better suited 
for a fast adapting model. It was replaced with a Huffman code 
due to patents (now expired) on arithmetic coding.  
 
5.5.4. BBB 

BBB (big block BWT) is an open source file compressor written 
by Matt Mahoney in Aug. 2006. It has two innovations: a "slow" 
mode that allows blocks up to 80% of available memory, and a 
context mixing model of the BWT sequence. When released, it 
was top ranked on the large text benchmark among BWT 
compressors because it was the only program that could fit the 
1 GB test file into a single block on a 2 GB machine.  
5.5.4.1. Slow Mode BWT 
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To context sort a large block, it is first divided into 16 smaller 
blocks which are sorted normally. (BBB uses std::stable_sort(), 
normally quicksort). The pointers are then written to 16 
temporary files, which are merged to produce the final result.  
The inverse transform does not build a linked list, because this 
takes 4 times as much memory as the block size. Recall that 
the inverse transform first sorts the bytes in the block into an 
array T (represented by 256 cumulative counts), and that p 
points to the next output byte in the block. The steps to be 
iterated are:  

1. output BWT[p]  
2. if T[p] is the i'th occurrence of c in T, then set p to the i'th 
occurrence of c in BWT.  

Normally, step 2 is done by traversing a link in the list NEXT. 
Instead, BBB searches the block for the i'th occurrence of c. To 
do this efficiently, it first consults an index that locates every 
16'th occurrence of c in BWT to get the approximate location, 
and searches linearly from there. This index takes 1/4 as much 
memory as the BWT block.  
 
5.5.4.2. Modeling 

BBB uses an order 0 indirect context model (section 4.1.3) 
followed by 6 SSE stages and bitwise arithmetic coding. The 
model uses 5 MB of memory. It looks like this:  
 

           0.5                        0.25        0.5 

        + SSE1 ->+                +---->----+ +---->----+ 

        |        |                |         | |         | 

  ICM ->+        +-> SSE3 -> SSE4 +-> SSE5 -+-+-> SSE6 -+-

> Encoder 

        |        | 

        + SSE2 ->+ 

           0.5 

 
The ICM takes a bytewise order 0 context, i.e. just the 
previous bits of the current byte. Recall that an ICM maps a 
context to a bit history (an 8 bit state), which is mapped to a 
slow adapting probability table.  
Each of the SSE (section 4.3.3) maps a context and a 
probability (stretched and quantized to 32 levels) to a new 
probability interpolated between the two nearest quantized 
outputs. SSE1 and SSE2 are both order 0, but SSE1 is fast 
adapting (learning rate 1/32) and SSE2 is slow adapting 
(learning rate 1/512). The two predictions are averaged in the 
linear domain. The SSE in BBB update both quantized table 
entries above and below the input probability, unlike ZPAQ 
which updates only the nearest.  
SSE3 takes a bytewise order 1 context. SSE4 takes the 
previous but not the current byte as context, plus the run length 
quantized to 4 levels (0, 1, 2..3, 4+).  
SSE5 takes a sparse order 1 context of just the low 5 bits and 
a gap of 1 byte, i.e. 5 of the last 16 bits, plus the current byte: 
...xxxxx ........ The output is averaged linearly with the input with 
weight 3/4 to the output.  
SSE6 takes a 14 bit hash of the order 3 context. It is averaged 
linearly with its input with weight 1/2 each.  
The table below compares the models for bzip2 and BBB on 
the Calgary corpus with each file compressed separately. In 
both cases the block size is 900 KB, which is large enough to 
hold each file in a single block. BBB is run in both fast and slow 
modes. About half of the compression time in both cases is 
due to PIC, which has long runs of 0 bytes. Unlike bzip2, BBB 
has no protection against long string comparisons while 
sorting.  

Note also that compressing all of the data together as a tar file 
makes compression worse. As mentioned, BWT is poorly 
suited for mixed data types.  
 

  Program      Calgary  Compr  Decomp (seconds)  

calgary.tar 

  --------     -------  -----  ------            ---------

-- 

  bzip2 -9     828,347   0.68  0.42              860,097 

  bbb cfk900   785,672  10.33  1.46 (fast mode)  800,762 

  bbb ck900    785,672  13.74  5.54 (slow mode) 

 
5.6. Predictive Filtering 
A predictive filter is a transform which can be used to 
compress numeric data such as audio, images, or video. The 
idea is to predict the next sample, and then encode the 
difference (the error) with an order 0 model. The decompresser 
makes the same sequence of predictions and adds them to the 
decoded prediction errors. Better predictions lead to smaller 
errors, which generally compress better.  
 
5.6.1. Delta Coding 

The simplest predictive filter is a delta code. The predicted 
value is just the previous value. For example, the sequence 
(5,6,7,9,8) would be delta coded as (5,1,1,2,-1). A second pass 
would result in (5,-4,0,1,-3).  
Delta coding works well on sampled waveforms containing 
only low frequencies (relative to the sampling rate), such as 
blurry images or low sounds. Delta coding computes a discrete 
derivative. Consider what happens in the frequency domain. A 
discrete Fourier transform represents the data as a sum of sine 
waves of different frequencies and phases. In the case of a 
sine wave with frequency Ï‰ radians per sample and 
amplitude A, the derivative is another sine wave with the same 
frequency and amplitude Ï‰A. From the Nyquist theorem, the 
highest frequency that can be represented by a sampled 
waveform is Ï€ or half the sampling rate. Frequencies above 1 
radian per sample will increase in amplitude after delta coding, 
and lower frequencies will decrease. Thus, if high frequencies 
are absent, it should be possible in theory to reduce the 
amplitude to arbitrarily small values by repeated delta coding.  
Eventually this fails because any noise (which is not 
compressible) in the prediction is added to noise in the sample 
with each pass. (Noise has a uniformly distributed spectrum, so 
its high frequency components are amplified by delta coding). 
Noise can come either from the original data or from 
quantization (rounding) errors during sampling. These are 
opposing sources. Decreasing the number of quantization 
levels removes noise from the original data but adds 
quantization noise.  
The images below show the effects of 3 passes of delta coding 
horizontally and vertically of the image lena.bmp (a widely used 
benchmark image). The original image is in BMP format, which 
consists of a 54 byte header and a 512 by 512 array of pixels, 
scanned in rows starting at the bottom left. Each pixel is 3 
bytes with the numbers 0..255 representing the brightness of 
the blue, green, and red components. The image is delta 
coded by subtracting the pixel value to the left of the same 
color, and again on the result by subtracting the pixel value 
below. (The order of the two encodings does not matter). To 
show the effects better, 128 is added to all pixel values (which 
does not affect compression). Thus, a pixel equal to its 
neighbors appears medium gray.  
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Original image  

 
Delta coded once horizontally and vertically.  

 
Delta coded twice.  

 
Delta coded 3 times.  

 
The original image is 786,486 bytes (with or without delta 
coding). The following table shows the compressed sizes when 
compressed with an order 0 indirect context model (ICM-0), 
with each of the 3 colors compressed in a separate stream.  
 

              ICM-0 

             ------- 

  lena.bmp   569,299 

  delta 1    511,316 

  delta 2    645,634 

  delta 3    768,154 

 
For comparison, Image Magick compresses to PNG format 
with size 474,573, and the top ranked paq8px_v67 -6 to 
412,641 bytes.  
Details: The ICM-0 model was implemented in ZPAQ 1.10 
using the following configuration:  
 

  comp 0 0 0 0 1 

    0 icm 7  (indirect context model using 2
7+6
 bytes) 

  hcomp 

    b++ a=b a== 3 if  (b is 0,1,2 depending on color) 

      a=0 b=0 

    endif 

    a<<= 9 *d=a halt  (context is color in bits 10..9 + 

order 0) 

  post 

    0 

  end 

 
5.6.2. Color Transform 

lena.bmp can be compressed to 499,139 bytes by performing 
the color transform (red, green, blue) to (red-green/4, green, 
blue-green*3/4), then delta coding and modeling with ICM-0. 
The transform was tuned to this image, but is not optimal for all 
images. For many others, the transform (red-green, green, 
blue-green) works well. The transform works because when 
one color is brighter, the others tend to be too. Thus, one color 
can predict the others. The ideal transform depend on the 
average color of the image.  
 
5.6.3. Linear Filtering 

A linear filter is a finite impulse response filter with n taps that 
predicts a sample xi in the sequence x1x2... as follows:  

prediction = Î£j=1..n wj xi-j  

where wj is called the j'th coefficient. A delta filter is the special 
case of the coefficient array n = 1, w = (1). Two passes of a 
delta filter is equivalent to n = 2, w = (2, -1), and 3 passes is 
equivalent to n = 3, w = (3, -3, 1).  
An adaptive filter is a linear filter whose coefficients are 
adjusted to reduce prediction errors. A simple update rule is:  

wj := wj + Î»xj-i(xi - prediction), j = 1..n  

http://www.imagemagick.org/
http://en.wikipedia.org/wiki/Finite_impulse_response
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where Î» is the learning rate. The update rule is unstable 
because of a positive feedback loop: when the error is large, it 
can lead to large updates which could increase the error even 
more. An adaptive filter must compensate by limiting the 
magnitudes of the weights and updates.  

 
5.7. Specialized Transforms 
It is often possible to find transforms that improve compression 
for specialized data types. We mention two.  
 
5.7.1. E8E9 

The E8E9 transform is used to compress x86 executable code 
(EXE or DLL files). In x86, a CALL or JMP instruction (E8 or E9 
hex) is followed by a 4 byte address (LSB first) relative to the 
program counter. Compression can be improved by converting 
to an absolute address, because code often contains many 
calls or jumps to the same address. The transform consists of 
searching for a byte with the value E8 or E9 hex (232 or 233), 
interpreting the next 4 bytes as a 32 bit number, and adding 
the offset from the beginning of the input file. The 
decompresser does the same, except that it subtracts the 
offset. E8E9 is used in CAB format (for CALL instructions only) 
and in many top end compressors. Recent versions of 
PAQ8PX by Jan Ondrus also transform conditional branch 
addresses.  
In x86-64, all references to static memory (not just JMP and 
CALL) are relative addresses. Currently transforms for x86-64 
are not yet widely used.  
 
5.7.2. Precomp 

Precomp is a program by Christian Schnaader that searches 
its input for segments of data compressed in deflate (zip) 
format and uncompresses them. This can improve 
compression if the (now larger) data is compressed with a 
better algorithm. Many applications and formats use deflate 
compression internally, including PDF, PNG, JAR (Java 
archive), ODT (OpenOffice) and SWF (Shockwave Flash).  
To make the inverse transform bitwise identical, precomp tests 
by recompressing the data with zlib and comparing it. Recall 
that LZ77 is not a bijection. There are many different ways to 
compress a string that will decompress the same way. 
Precomp relies on the fact that most applications use zlib 
rather than write their own implementation. Still, precomp must 
test 81 combinations of options to find one that compresses to 
exactly the original data, and then stores those options in the 
output. If it fails to find a match (even in valid deflate data), 
then it must insert additional data.  
Precomp can be used by itself. It is also built into two 
compressors, lprepaq (precomp+lpaq6) and paq8o8pre 
(precomp+paq8o8). paq8o8pre -7 compresses flashmx.pdf 
from the Maximum Compression corpus to 1,821,939 bytes in 
692 seconds. As of Feb. 2010 the program has not yet been 
benchmarked and the best result is 3,549,197 bytes by WinRK 
3.1.2. The improvement is obtained partly by unzipping many 
embedded BMP images and compressing them with paq8o8's 
specialized BMP model (which is also top ranked on 
rafale.bmp).  

 
5.8. Huffman coding 
The open source file compressor M1x2 v0.6 by Christopher 
Mattern in Feb. 2010 uses order 1 Huffman coding as a 
preprocessor to a context mixing model. The idea is to reduce 
the size of the input to make compression faster. The model 
contexts are aligned on Huffman code boundaries instead of 
byte boundaries. The order 1 coder is actually 256 tables 
selected by the previous byte. Huffman codes are limited to 12 
bits in length to simplify the implementation.  

 
6. Lossy Compression 

Lossy compression refers to discarding unimportant 
information. Generally this means compressing images, video, 
or audio by discarding data that the human perceptual system 
cannot see or hear.  
Lossy compression is a hard AI problem. To illustrate, speech 
could theoretically be compressed by transcribing it into text 
and compressing it with standard techniques to about 10 bits 
per second. We are nowhere near that.  
Even worse, we could imagine a lossy video compressor 
translating a movie into a script, and the decompresser reading 
the script and creating a new movie with different details but 
close enough so that the average person watching both movies 
one after the other would not notice any differences. We may 
use a result by Landauer (1986) to estimate just how tiny this 
script could be. He tested people's memory (over a period of 
days) over a wide range of formats such as words, numbers, 
pictures and music, and concluded that the human brain writes 
to long term memory at a fairly constant rate of about 2 bits per 
second. Currently we need 10

7
 bits per second to store DVD 

quality MPEG-2 video.  
The state of the art is to apply lossy compression only at a 
very low level of human sensory modeling, where the model is 
well understood.  

 
6.1. Image Compression 
All image formats, even BMP, may be regarded as a form of 
lossy image compression. An uncompressed image is normally 
a 2 dimensional array of pixels, where each pixel has 3 color 
components (red, green, blue) represented as an integer with a 
fixed range and resolution. A pixel array is an approximation of 
a 2 dimensional continuous field where the light intensity at any 
point would be properly described as a continuous spectrum. 
Note how lossy compression is applied:  

 The eye can't see detail much smaller than 0.1 mm, so 
there is no need for an image to have more than a few 
thousand pixels in each dimension.  

 The eye can't detect differences in brightness of less than 
about 1%, so there is no need to quantize brightness to more 
than a few hundred levels.  

 The eye has 3 types of cones sensitive to red, green, and 
blue. Combinations of these colors can reproduce every color 
that the eye can see. There is no need to distinguish pure 
spectral yellow emitted by a rainbow from the apparent yellow 
from a monitor produced from a mixture of red and green 
light, even though there are instruments such as a 
spectrograph that can make such distinctions.  

 The eye detects brightness on a logarithmic scale, so there 
is no need to use more bits to represent brighter lights. 
Sunlight is 1000 times brighter than room light, but doesn't 
look like it.  

 
6.1.1. BMP 

A BMP image uses 8 bits per pixel per color, which matches 
the resolution of most monitors. Each value is an 8 bit number 
ranging from 0 (darkest) to 255 (brightest). The values are 
proportional to apparent light intensity, not actual intensity. The 
actual intensity is gamma corrected by the monitor by raising it 
to the power of Î³ = 2.2. Thus, a pixel value of 200 is a little 
over 4 times as bright as a pixel value of 100, although it only 
looks twice as bright.  
 
6.1.2. GIF 

The GIF image format is lossless except that it uses a color 
palette of up to 256 colors. The format is an array of 8 bit 
indexes into the palette. The limited number of colors 
noticeably reduces the quality of color photographs, although it 
is sufficient for grayscale or diagrams. A GIF file may contain 
multiple images for animations.  
GIF uses LZW compression (section 5.3.1) with a maximum 
dictionary size of 4K. When the table is full, it is discarded and 
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re-initialized. It reserves two codes to initialize the table and to 
mark the end of data.  
Use of GIF was discouraged due to a patent on LZW, which is 
now expired.  
 
6.1.3. PNG 

PNG is a lossless image format. Images are normally 8 bits 
per pixel but can be more. A pixel has 3 color components and 
an optional fourth component for an alpha channel to indicate 
transparency.  
PNG is compressed by predictive filtering (section 5.6) 
followed by deflate (section 5.2.2). There are 5 filters which can 
be selected for each scan line. The image is scanned left to 
right starting at the top. Let A, B, and C be the previously 
coded neighboring pixels of the predicted pixel x:  
  C B 

  A x 

The 5 possible predicted values are 0, A, B, (A+B)/2, or Paeth. 
The Paeth filter is to predict A, B, or C, whichever is closest to 
A + B - C. The Paeth filter usually gives the best compression.  
 
6.1.4. TIFF 

TIFF is an image container format. Most commonly it is used 
for uncompressed images when BMP cannot be used because 
more than 8 bits per pixel or more than 3 color components are 
needed. TIFF supports several lossless compression modes. 
The most common is delta coding (subtracting the pixel to the 
left) followed by LZW.  
 
6.1.5. JPEG 

JPEG is the most widely used representation for photographic 
images. It uses lossy compression. It exploits two limitation of 
human visual perception. First, the eye has different degrees of 
sensitivity to brightness variation depending on spatial 
frequency, peaking at 0.1 to 0.2 degrees (a few pixels). 
Second, the eye is much less sensitive to color variation at 
high spatial frequencies. The compression steps for baseline 
JPEG are as follows:  

 Color transform from RGB to YCbCr.  

 Downsampling the two chroma components Cb and Cr.  

 8 by 8 discrete cosine transform (DCT).  

 Variable quantization depending on color and spatial 
frequency.  

 Delta coding the DC coefficient.  

 Reordering the coefficients in zigzag order from low to high 
frequency.  

 Huffman coding with run length encoding of zeros.  
The color transform from RGB (red, green, blue) to YCbCr is:  

Y = 0.299 R + 0.587 G + 0.114 B (black-white) 
Cb = 128 - 0.168736 R - 0.331264 G + 0.5 B 
(yellow-blue) 
Cr = 128 + 0.5 R - 0.418688 G - 0.081312 B 
(green-red) 

The eye is less sensitive to fine detail in Cb and Cr than in Y, 
so these two are (optionally) downsampled 2 to 1 by averaging 
2 by 2 blocks of pixels into 1 pixel.  
The DCT represents 8 by 8 blocks of pixels in the spatial 
frequency domain. The 64 DCT coefficients Suv, u, v in 0..7, of 
the 8 by 8 pixel block Sxy, x, y in 0..7, are computed as follows:  

Suv = Î±(u)Î±(v) Î£x=0..7Î£y=0..7 Sxy cos[Ï€/8 
(x+1/2) u] cos[Ï€/8 (y+1/2) v]  

where Î±(0) = 1/8
1/2

 and Î±(1..7) = 1/4 are normalizing factors. 
u is the horizontal spatial frequency and v is the vertical spatial 
frequency. The image below shows the contribution of each of 
the 64 Suv DCT coefficients to an 8 by 8 pixel block with u 
reading across and v reading down. The S00 coefficient is at 
the top left.  

 
8 by 8 DCT (from Wikipedia).  

 

Each of the 64 coefficients in Y and the 64 in Cb and Cr are 
quantized by dividing by one of 128 values from two 
quantization tables and rounding. Because the eye is less 
sensitive to high spatial frequencies (u and v large), especially 
in the two chroma components, these divisors can be larger.  
The coefficient S00 is the average brightness of the 8 by 8 
block. It is called the "DC" coefficient. It is the only one that 
depends significantly on neighboring blocks, so it is delta 
coded by subtracting the DC coefficient of the last coded block 
of the same color. The other 63 coefficients are called "AC".  
For most images, the high spatial frequencies will be small 
except in regions with fine detail. Therefore the coefficients are 
reordered in zigzag order by increasing u+v, resulting in the 
largest coefficients appearing first.  
The coefficients are grouped into runs of R zeros followed by 
one nonzero value, where R ranges from 0 to 15. The nonzero 
coefficient is a 12 bit signed number, but is usually near 0. It is 
coded as an S bit signed number, where S ranges from 1 to 
12, followed by S extra bits. For example, the sequence 
0,0,0,0,0,3 would be coded as R=5,S=2,11. The RS code (52) 
would be Huffman coded, and the two bits "11" (binary 3) 
would follow uncompressed. Negative numbers are coded by 
subtracting 1 and sending the same number of bits. For 
example, -3 would be coded as "00", which are the last 2 bits 
of -4. After the last nonzero coefficient, a RS code of 00 marks 
the end of block.  
There are 4 Huffman tables for the RS codes, one each for 
DC-Y, DC-color, AC-Y, and AC-color. The tables are 
transmitted by sending 16 lists of RS codes (1 byte each) 
having code lengths of 1 through 16. Each list is preceded by 
one byte to indicate the length of the list. Other data such as 
the quantization tables are sent uncompressed. Huffman codes 
are packed in MSB to LSB order.  
JPEG supports inserting restart codes into the Huffman coded 
data to mark the start of independently compressed image 
slices for error recovery. There is also an end of image symbol. 
The Huffman code is designed so that symbols can be found 
without decoding. Symbols are marked with a starting FF byte 
(11111111 binary). No symbol is assigned a Huffman code of 
all 1 bits. Also, if a byte of all 1 bits is coded, then it is followed 
by a 0 byte which the decoder skips.  
The JPEG specification describes several modes in addition to 
baseline, described above. About 95% of images are baseline 
JPEG. The rest are mostly progressive mode. In this mode, a 
coarse approximation of the image is sent first so that the 
receiver can start displaying it before the rest of it is received. 
Progressive mode uses two techniques to do this. One is 
spectral selection, in which the low frequency DCT coefficients 
are sent first. The other is progressive approximation, in which 
the high order bits of the coefficients are sent first. Usually both 
techniques are combined.  
JPEG allows up to 4 colors (for an alpha channel) and 12 bits 
per pixel. These modes are rare, but are supported by the IJG 
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reference implementation. Images may also be grayscale by 
dropping the Cb and Cr components.  
The JPEG standard also describes arithmetic coding as an 
alternative to Huffman coding, and a lossless hierarchical 
mode in which successively higher resolution images are sent 
as differences from the previous one. Neither of these two 
were implemented by IJG or any subsequent software because 
the methods were patented at the time.  
In 2002, Forgent claimed U.S. patent 4,698,672 on JPEG, 
specifically the invention of using a single code to represent a 
run length followed by a second value, which is used in the RS 
codes. By April 2004, Forgent announced that it had collected 
US$90 million from 30 companies and filed patent infringement 
suits against 31 others. In May 2006 the USPTO ruled that the 
claims of the patent related to JPEG were invalid due to prior 
art. The patent expired 5 months later.  
The images below show the effects of the color transform and 
DCT. The first image was created using IJG's public domain 

software cjpeg to convert lena.bmp (786,486 bytes) to JPEG 
(23,465 bytes). This is 17.5 times smaller than the best result 
obtained with lossless compression.  

 
 

 
Left: lena.bmp, 786,486 bytes. Right: JPEG created with cjpeg 

-quality 50 -optimize, 23,465 bytes.  
The -quality setting sets the quantization tables. These range 
from 16 for the Y-DC coefficient to 99 for high frequency 
coefficients. The -optimize parameter creates the best possible 
Huffman tables.  
The images below show a JPEG image separated into its 
three color components by setting all of the other coefficients to 

0. All images below are high quality (-quality 100) without 
chroma downsampling as above.  

 
Y coefficients only.  

 
 

 
Left: Cb only. Right: Cr only.  

The images below separate some of the different frequency 
coefficients.  
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S00 (DC)  

 
 

 
First two AC coefficients. Left: S01. Right: S10. Note that these 

are color images.  

 
 

 
Left: S20. Right: S11.  

The following image illustrates the eye's insensitivity to fine 
detail in Cb and Cr. All of the 63 AC coefficients in Cb and Cr 
are set to 0, and yet the effect is barely noticeable. Compare 
with S00 above when the Y AC coefficients are also removed.  

 
All 63 AC chroma coefficients set to 0.  

 
6.2. Video Compression 
Video approximates continuously moving images by using a 
sequence of still images, called frames. The neural circuitry of 
the human visual system has a delayed response to light on 
the order of tens of milliseconds. Thus, a frame rate of at least 
24 to 30 per second produces a sensation that is nearly 
indistinguishable from continuous motion. However, simply 
flashing images at this rate would produce a noticeable flicker. 
The eye can detect flicker at rates of up to about 75 flashes per 
second. Sensitivity to flicker increases in bright light, toward the 
blue end of the spectrum, and in peripheral vision away from 

the fovea where visual acuity is sharpest. Thus, a computer 
monitor viewed up close requires a higher refresh rate than a 
television viewed from a distance. Movie theatres display 24 
frames per second and remove flicker by flashing each frame 
on the screen two to four times.  
Video frames do not have to have as much resolution as still 
images. The eye moves in saccades, jumping from one part of 
the image to another at a rate of 30 to 70 times per minute. In 
still images, the eye is attracted to regions of high contrast 
such as edges or corners, and to areas of interest such as 
faces. In text, the eye jumps from word to word. This requires 
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all of the image to be displayed in fine detail. In video, there is 
not enough time to look at more than one part of a frame 
before the next frame is displayed. Thus, the rest of the frame 
can be displayed at a low resolution.  
Between saccades, the eye tracks moving objects smoothly. If 
a frame is displayed more than once or for more than a small 
fraction of the frame interval, then the effect is to blur the object 
as the eye moves across each frame.  
Time sampling of images can produce artifacts such as the 
wagon wheel effect, where a spoked wheel appears to spin 
slowly backward. This artifact is analogous to the Moire effect 
caused by spatial sampling of a repeating pattern in still 
images.  
 
6.2.1. NTSC 

NTSC is one of three standards for analog television, the 
others being PAL and SECAM, used in different parts of the 
world. NTSC standardized black and white television in 1941 
and color TV in 1953 in North America. It was used until 2009 
for over the air broadcasts in the U.S., when it was replaced by 
HDTV.  
NTSC is displayed at 29.97 frames per second. Each frame 
consists of 525 horizontal scan lines starting at the top left 
corner of the screen. To reduce flicker, the display is 
interlaced: each frame is divided into two fields which 
alternately display the even and odd numbered lines. (PAL and 
SECAM use 625 scan lines at a rate of 50 fields or 25 frames 
per second). NTSC is an analog format, so there is no concept 
of a "pixel". However, the luma (brightness) signal is 
transmitted over a band that extends about 4.5 MHz above the 
carrier. This corresponds to a Nyquist sampling rate of 9 million 
pixels per second, equivalent to about 571 pixels per scan line.  
When color TV was introduced in 1953, a chroma signal was 
added without increasing the bandwidth or breaking 
compatibility with black and white TV sets. The spectrum 
allocation is shown below.  

 
NTSC frequency allocation (from Wikipedia).  

 

The video signal is split into three color components similar to 
YCbCr as in JPEG. The black-white (luma) signal is 
unchanged. It is amplitude modulated in the same band of 4.95 
MHz. The blue-yellow and red-green signals are transmitted in 
a smaller band with a width of 2 MHz that overlaps the luma 
signal. A narrower band is possible because the eye is less 
sensitive to high spatial frequencies in chroma (especially blue-
yellow) than luma. The two signals are amplitude modulated 90 
degrees out of phase, allowing them to be separated by the 
receiver.  
Because the luma and chroma overlap, the color signal can 
produce black and white artifacts and vice versa. The carrier 
frequencies are carefully chosen so that the artifacts of 
successive frames cancel out, reducing their visibility.  
 
6.2.2. MPEG 

MPEG is the most widely used format for video compression. 
The most commonly used versions are as follows.  

 MPEG-1 is the original version of the standard, published in 
1993. It specifies non-interlaced video at bit rates up to 1.5 

Mbits/second. All patents on the video portion of the 
specification have expired. MPEG-1 layer 3 audio (MP3) is 
still patent protected.  

 MPEG-2 extends MPEG-1 to interlaced video and higher 
bit rates to support digital television. It is the format used for 
most DVD video and for HDTV. In spite of minor differences 
between MPEG-1 and MPEG-2, it is protected by about 600 
patents by dozens of companies. Licenses are managed by 
the MPEG Licensing Authority (MPEG-LA).  

 MPEG-4 part 10, also known as H.264 or AVC (Advanced 
Video Codec) compresses video to about half the size of 
MPEG-1 or 2 at a similar quality level. It is widely used in 
Youtube and Google Video. It is also patented and licensed 
by MPEG-LA.  

Although video files can stand alone, they are more often 
embedded in a container format such as AVI or streamed 
through a Flash player. MPEG-2 defines a transport stream for 
over the air transmission of HDTV by encapsulating the data in 
188 byte packets with error correction.  
MPEG-1 and MPEG-2 use a compression algorithm similar to 
JPEG, but obtain additional compression by delta coding 
between frames with motion compensation. There are 3 types 
of frames, designated I (inter-frame), P (predictive), and B 
(bidirectional). An I-frame can be decoded by itself. A P-frame 
is described in terms of differences from the previous frame. A 
B-frame is described in terms of difference from both the 
previous and next frame. A typical pattern is one I-frame every 
0.5 seconds, repeating the sequence IBBPBBPBBPBBPBB. To 
facilitate decoding, the frames are sent out of order with the B 
frames sent after any future frame it depends on. The decoder 
then reorders the frames before displaying them. The reason 
for having I frames every 0.5 seconds is to allow decoding to 
start from the middle of a video after rewinding or fast 
forwarding.  
Motion compensation is implemented by dividing a frame into 
16 by 16 macroblocks. A macroblock in a P or B frame is 
decoded using a motion vector which points to a same sized 
region of the previous (or next) decoded image with a specified 
offset horizontally and vertically. After motion compensation, P 
and B frames are encoded using a JPEG-like algorithm as with 
I frames.  
It is up to the encoder to find good matches in adjacent frames 
for encoding macroblocks. The encoder calculates the 
differences from the decoded image, not the original, by 
encoding and then decoding the adjacent frame.  
Frame compression is like JPEG except that it uses fixed 
Huffman tables (called variable length codes) and fixed 
quantization tables with only a scale factor transmitted. MPEG 
is often transmitted at a constant bit rate, which is achieved by 
adjusting the quantization scale factor as needed. For DVDs, 
the maximum bit rate is about 10 Mbits/second. The result is 
that scenes with lots of motion are transmitted at a lower 
resolution.  
MPEG-4/AVC (H.264) differs from MPEG-1/2 mainly in that it 
uses a wavelet transform instead of a discrete cosine transform 
(DCT), and supports arithmetic coding in addition to Huffman 
coding. It also supports variable sized macroblocks, from 4 by 
4 to 16 by 16, with motion vectors pointing to any of 16 
adjacent frames (or 32 fields) in 1/4 pixel resolution. Fractional 
motion vectors are obtained by using a 6 tap filter to infer half 
pixel intensities, followed by simpler interpolation.  

 
6.3. Audio Compression 
Lossy audio compression uses a psychoacoustic model to 
determine which part of the signal can be discarded without 
changing the original sound. The human ear can only perceive 
sounds in the range 20 Hz to 20 KHz. Sensitivity peaks around 
1 KHz to 5 KHz, the middle of the range of human speech. 
Frequency resolution is 3.6 Hz in the range 1 KHz to 2 KHz.  
Like the eye, the ear perceives sound on a logarithmic scale. 
The range of hearing is from 0 decibels, the threshold of 
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hearing, to 120 decibels, which is loud enough to be painful 
and cause hearing damage. An increment of 10 decibels (dB) 
represents an increase in power by a factor of 10, although we 
perceive it as closer to twice as loud. An increment of 20 dB 
represents an increase in amplitude by a factor of 10 (because 
power is proportional to amplitude squared).  
The logarithmic scaling is partially due to the masking effect, in 
which a sound decreases sensitivity to other sounds at 
different frequencies that occur at the same time (frequency 
masking) or other sounds at the same frequency that occur 
earlier or later (temporal masking). The graph below illustrates 
how frequency masking affects the threshold of hearing. 
Temporal masking has an exponentially decaying effect, 
starting from about 20 milliseconds before the sound to 100 
milliseconds afterward.  

 
The effect of frequency masking on the threshold of human 

hearing (from Wikipedia).  
 

Humans can perceive the direction of a sound source to an 
accuracy of about 3 degrees. Stereoscopic sound perception 
depends on two effects. First, a sound is louder in the ear 
closer to the source. Second, there is a time delay in reaching 
the further ear because sound travels at about 300 meters per 
second through air. Earphones can reproduce both of these 
effects, but stereo speakers typically do not. The sound seems 
to come from one speaker or the other or from some point in 
between. This has led to sound systems with more than 2 
channels.  
High frequency sounds are harder to locate when the distance 
between the ears is more than 1/2 wavelength because the 
phase shift is ambiguous and because neurons can't fire fast 
enough to transmit phase information. This occurs at around 
1.5 KHz. This suggests an approach of transmitting stereo 
information (left minus right) at a lower bandwidth.  
The simplest form of lossy audio compression is to filter out 
the high frequencies where most of the information is located. 
AM radio discards frequencies above 10.5 KHz. FM uses a 
bandwidth of 15 KHz for the mono signal (left plus right) and 13 
KHz for the stereo signal.  
DS0 digital telephony uses a sampling rate of 8 KHz, which 
requires filtering out all audio above the Nyquist rate of 4 KHz. 
In practice, audio above 3.3 to 3.5 KHz is filtered out. Each 
sample is 8 bits which is companded, or quantized on a 
logarithmic scale. Essentially, each 8 bit value is a floating 
point representation of a 14 bit integer (78 dB dynamic range) 
using a sign bit, 3 exponent bits and 4 mantissa bits. This 64 
Kbit/second signal is sufficient to reproduce speech in spite of 
the fact that some sounds such as /s/ are almost entirely 
outside the bandwidth (4 to 8 KHz).  
CD audio is stored uncompressed. It consists of two channels 
sampled at 44.1 KHz (22.05 maximum frequency) at 16 bits 
per sample (90 dB range). The bit rate is 1411.2 Kbit/second.  
Lossy audio formats such as MP3, AAC, Dolby, and Ogg 
Vorbis are based on dividing the audio into blocks of samples, 
computing the modified (overlapped) discrete cosine transform 

(MDCT), quantizing, and transmitting the coefficients without 
further compression. Quantization uses the psychoacousitic 
model to determine the appropriate precision at each 
frequency. All formats support a wide range of sampling rates, 
compressed bit rates, and number of channels. All but Ogg 
Vorbis are protected by patents.  
All of these formats support joint frequency encoding, a 
technique which compresses the stereo (left minus right) 
signal. Because the ear can detect intensity differences but not 
timing differences at high frequencies, this part of the stereo 
signal can be removed and replaced with information to control 
the overall intensity for each channel.  
MP3 (MPEG-1 layer III) was the first widely used compressed 
format for encoding music on the Internet. Audio is divided into 
blocks of either 576 samples, or 192 samples to encode 
transients (rapid changes in the audio signal). Two channels 
(left and right) are supported. Good quality is achieved at a bit 
rate of 128 Kbits/seconds, or 9% of uncompressed CD audio. 
Bit rates can be variable.  
AAC (Advanced Audio Codec, MPEG-2 part 7) is the default 
audio format used by Apple's iPod and iTunes. It is understood 
by most music players, phones, and video game consoles. 
AAC supports a greater range of bit rates and sampling rates 
than MP3. Block sizes are 1024 and 128 samples (or 960 and 
120 depending on sampling rates). Good quality audio is about 
96 Kbits/second.  
Dolby Digital (AC-3, ATSC A/52) is the audio format used in 
DVDs and HDTV. It supports 5.1 Surround Sound. The "5.1" 
refers to 5 channels (left front, right front, left rear, right rear, 
center) and a low frequency subwoofer channel.  
Ogg is a free, open source container for the Vorbis audio 
format. At a bit rate of 96 Kbits/second it has an audio quality 
slightly better than AAC and better than MP3.  
The MDCT computes N frequency coefficients from 2N 
samples x0..x2N-1 in 2 adjacent blocks. The overlap is 
necessary to prevent artifacts where the blocks join together. 
The coefficients are computed:  

Xk = Î£i=0..2N-1 wi xi cos[(Ï€/N)(i + (N+1)/2)(k + 
1/2)], k = 0..N-1  

The coefficients Xk represent frequencies ranging from 1/2Ï€N 
up to the Nyquist rate 1/2. The inverse transform (IMDCT) has 
the same form:  
yi = (wi/N) Î£k=0..N-1 Xk cos[(Ï€/N)(i + (N+1)/2)(k + 1/2)], i = 0..2N-
1  
The inverse transform has N inputs and 2N outputs. To 
complete the transform, the two overlapping sets of samples, yi 
and yi+N, from adjacent blocks are added together. To minimize 
boundary artifacts, the window function weights w0..2N-1 are 
selected such that the weights at the ends (near 0 and 2N-1) 
go to 0 and are 1 in the middle, usually with a rounded shape. 
Because each weight is used twice in each block, they must 
satisfy wi

2
 + wi+N

2
 = 1. MP3 and AAC use the window:  

wi = sin[(Ï€/2N)(i + 1/2)].  
Vorbis uses:  
wi = sin{(Ï€/2) sin

2
[(Ï€/2N)(i + 1/2)]}  

Dolby AC-3 uses a Kaiser-Bessel derived window, which has a 
similar shape.  

 
Conclusion 
Data compression is the art of finding short descriptions for 
long strings. Every compression algorithm can be decomposed 
into zero or more transforms, a model, and a coder. Coding is 
a solved problem. Given a symbol with probability p, Shannon 
proved that the best you can do is code it using log2 1/p bits. 
An arithmetic coder does this efficiently.  
There is no general procedure for finding good models or 
prediction algorithms. It is both an art and a hard problem in 
artificial intelligence. There is (provably) no test to tell you if a 
string can be compressed or if a better model exists.  
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Prediction is closely related to understanding. If you 
understand Chinese, then you can predict a sequence of 
Chinese symbols. This principle can be applied to context 
modeling. Useful contexts are semantically independent units, 
for example, words in text, instructions in executable code, 
fields in a database, or recognizable features in an image. 
Different symbols that have similar meanings should be treated 
as if they were the same context. For example, in text, it is 
useful to merge upper and lower case, spaces and newlines, or 
related words like "someone" and "somebody" or "cold" and 
"wet". A context model for images would distinguish blue from 
green pixels but ignore fine differences. The best compressors 
combine the predictions of many independent models.  
Preprocessing transforms are optimizations that sacrifice 
compression for speed and memory. Often, the output can be 
compressed with a simple order 0 or low order model. A 
transform by itself does not compress. It may hide useful 
contexts and add arbitrary information that makes the output 
ultimately larger. A good transform should minimize these 
effects. Thus, a BWT compressor that works on words as units 
would compress text better than the usual case of sorting 
bytes. Likewise, an LZ77 compressor that replaced duplicate 
strings on whole word boundaries would be preferred. 
Dictionary preprocessors improve both BWT and LZ77 
compression by forcing those transforms to split the input on 
word boundaries. The best compressors on the large text 
benchmark use dictionary preprocessing, but I believe that is 
because the benchmark is tightly constrained by memory. 
When computers with hundreds of gigabytes become 
available, I believe that the top ranked programs will no longer 
use large dictionaries.  
Lossless compressors ignore meaningless data in selecting 
contexts. Meaningless or random data has no predictive value 
and is itself not compressible. A lossy compressor not only 
ignores the meaningless data, but also discards it completely. 
Deciding which data is meaningful is a hard AI problem that 
applies to both lossless and lossy compression. Both require a 
deep understanding of human cognitive psychology.  
Coding theory says that the vast majority of strings do not 
have simple descriptions, so it is rather remarkable that 
compressible strings are so common in practice. Solomonoff, 
Kolmogorov, and Chaitin independently proposed that strings 
have a universal probability proportional to 2

-|M|
, where M is its 

shortest description, independent of the language in which M is 
written. Kolmogorov proved that there is no algorithm for 
finding such descriptions in any language. Hutter showed that 
the compression problem, if it were computable, would solve 
the general AI problem of optimizing arbitrary utility functions. 
In effect, he proved Occam's Razor, which is the foundation of 
all science: the simplest theory that explains the past is the 
best predictor of future events.  
The prevalence of compressible strings, and thus science, 
depends on two facts. First, that all strings are the result of 
computable (or finitely describable) processes, and second, 
that shorter programs or descriptions are more likely than 
longer ones. To show the second, consider a probability 
distribution over the infinite set of all finite length descriptions. 
Any such distribution must favor shorter descriptions. Consider 

any description M having probability p > 0. There can be at 
most a finite number (1/p) of more likely descriptions, and 
therefore an infinite number of less likely descriptions. Of the 
latter, there can be at most a finite number (2

|M|
 - 1) that are 

shorter than M. Therefore there must be an infinite number of 
less likely descriptions that are longer than M, for all M.  
The question remains whether all strings found in the real 
world are created by computable or finitely describable 
processes. This must be true for finite strings, but there are 
known to exist, at least in mathematics, infinite length strings 
such as Chaitin's constant Î© (the probability that a random 
program will halt) that are not computable. In fact, the vast 
majority of infinite length strings do not have finite length 
descriptions. Could there exist phenomena in the real world 
that have infinite length descriptions that are not compressible? 
For example, would it be possible to take an infinite number of 
measurements or observations, or to measure something with 
infinite precision? Do there exist infinite sources of random 
data?  
The laws of physics say no. At one time it was believed that 
the universe could be infinitely large and made up of matter 
that was infinitely divisible. The discoveries of the expanding 
universe and of atoms showed otherwise. The universe has a 
finite age, T, about 13.7 billion years. Because information 
cannot travel faster than the speed of light, c, our observable 
universe is limited to an apparent 13.7 billion light years, 
although the furthest objects we can see have since moved 
further away. Its mass is limited by the gravitational constant, 
G, to a value that prevents the universe from collapsing on 
itself.  
A complete description of the universe could therefore consist 
of a description of the exact positions and velocities of a finite 
number (about 10

80
) of particles. But quantum mechanics limits 

any combination of these two quantities to discrete multiples of 
Planck's constant, h. Therefore the universe, and everything in 
it, must have a finite description length. The entropy in nats (1 
nat = 1/ln(2) bits = 1.4427 bits) is given by the Bekenstein 
bound as 1/4 of the area of the event horizon in Planck units of 
area hG/2Ï€c

3
, a square of 1.616 x 10

-35
 meters on a side. For 

a sphere of radius Tc = 13.7 billion light years, the bound is 
2.91 x 10

122
 bits.  

We now make two observations. First, if the universe were 
divided into regions the size of bits, then each volume would be 
about the size of a proton or neutron. This is rather remarkable 
because the number is derived only from the physical 
constants T, c, h, and G, which are unrelated to the properties 
of any particles. Second, if the universe were squashed flat, it 
would form a sheet about one neutron thick. Occam's Razor, 
which the computability of physics makes true, suggests that 
these two observations are not coincidences.  
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