
Data Compression Explained
Matt Mahoney

Copyright (C) 2010, Ocarina Networks. You are permitted to
copy and distribute material from this book provided (1) any
material you distribute includes this license, (2) the material is
not modified, and (3) you do not charge a fee or require any
other considerations for copies or for any works that
incorporate material from this book. These restrictions do not
apply to normal "fair use", defined as cited quotations totaling
less than one page. This book may be downloaded without
charge from http://mattmahoney.net/dc/dce.html.
Last update: Feb. 26, 2010.

About this Book
This book is for the reader who wants to understand how data
compression works, or who wants to write data compression
software. Prior programming ability and some math skills will
be needed. Specific topics include:

 Information theory: entropy and algorithmic complexity, and
the relationship to artificial intelligence.

 Benchmarks.

 Coding: Huffman, arithmetic, asymmetric binary.

 Modeling: fixed order, variable order (PPM), context mixing
(PAQ). Static vs. dynamic.

 Transforms: run length, string matching (LZ77), dictionary
(LZW), context sorting (BWT), symbol ranking, predictive
filters, E8E9, recompression.

 Lossy compression for images (JPEG), video (MPEG), and
audio (MP3).

This book is intended to be self contained. Sources are linked
when appropriate, but you don't need to click on them to
understand the material.

1. Information Theory
Data compression is the art of reducing the number of bits
needed to store or transmit data. Compression can be either
lossless or lossy. Losslessly compressed data can be
decompressed to exactly its original value. An example is 1848
Morse Code. Each letter of the alphabet is coded as a
sequence of dots and dashes. The most common letters in
English like E and T receive the shortest codes. The least
common like J, Q, X, and Z are assigned the longest codes.
All data compression algorithms consist of at least a model
and a coder (with optional preprocesing transforms). A model
estimates the probability distribution (E is more common than
Z). The coder assigns shorter codes to the more likely
symbols. There are efficient and optimal solutions to the coding
problem. However, optimal modeling has been proven not
computable. Modeling (or equivalently, prediction) is both an
artificial intelligence (AI) problem and an art.
Lossy compression discards "unimportant" data, for example,
details of an image or audio clip that are not perceptible to the
eye or ear. An example is the 1953 NTSC standard for
broadcast color TV, used until 2009. The human eye is less
sensitive to fine detail between colors of equal brightness (like
red and green) than it is to brightness (black and white). Thus,
the color signal is transmitted with less resolution over a
narrower frequency band than the monochrome signal.
Lossy compression consists of a transform to separate
important from unimportant data, followed by lossless
compression of the important part and discarding the rest. The
transform is an AI problem because it requires understanding
what the human brain can and cannot perceive.
Information theory places hard limits on what can and cannot
be compressed losslessly, and by how much:

1. There is no such thing as a "universal" compression
algorithm that is guaranteed to compress any input, or even
any input above a certain size. In particular, it is not possible
to compress random data or compress recursively.

2. Given a model (probability distribution) of your input data,
the best you can do is code symbols with probability p using
log2 1/p bits. Efficient and optimal codes are known.
3. Data has a universal but uncomputable probability
distribution. There is no general procedure for finding good
models. There is no algorithm that tests for randomness or
tells you whether a string can be compressed any further.

1.1. No Universal Compression
This is proved by the counting argument. Suppose there were
a compression algorithm that could compress all strings of at
least a certain size, say, n bits. There are exactly 2

n
 different

binary strings of length n. A universal compressor would have
to encode each input differently. Otherwise, if two inputs
compressed to the same output, then the decompresser would
not be able to decompress that output correctly. However there
are only 2

n
 - 1 binary strings shorter than n bits.

In fact, the vast majority of strings cannot be compressed by
very much. The fraction of strings that can be compressed from
n bits to m bits is 2

m - n
. For example, less than 0.4% of strings

can be compressed by one byte.
Every compressor that can compress any input must also
expand some of its input. However, the expansion never needs
to be more than one symbol. Any compression algorithm can
be modified by adding one bit to indicate that the rest of the
data is stored uncompressed.
The counting argument applies to systems that would
recursively compress their own output. In general, compressed
data appears random to the algorithm that compressed it so
that it cannot be compressed again.

1.2. Coding is Bounded
Suppose we wish to compress the digits of Ï€, e.g.
"314159265358979323846264...". Assume our model is that
each digit occurs with probability 0.1, independent of any other
digits. Consider 3 possible binary codes:

Digit BCD Huffman Binary

---- ---- ---- ----

 0 0000 000 0

 1 0001 001 1

 2 0010 010 10

 3 0011 011 11

 4 0100 100 100

 5 0101 101 101

 6 0110 1100 110

 7 0111 1101 111

 8 1000 1110 1000

 9 1001 1111 1001

--- ---- ---- ----

bpc 4.0 3.4 not valid

Using a BCD (binary coded decimal) code, Ï€ would be
encoded as 0011 0001 0100 0001 0101... (Spaces are shown
for readability only). The compression ratio is 4 bits per
character (4 bpc). If the input was ASCII text, the output would
be compressed 50%. The decompresser would decode the
data by dividing it into 4 bit strings.
The Huffman code would code Ï€ as 011 001 100 001 101
1111... The decoder would read bits one at a time and decode
a digit as soon as it found a match in the table (after either 3 or
4 bits). The code is uniquely decodable because no code is a
prefix of any other code. The compression ratio is 3.4 bpc.
The binary code is not uniquely decodable. For example, 111
could be decoded as 7 or 31 or 13 or 111.
There are better codes than the Huffman code given above.
For example, we could assign Huffman codes to pairs of digits.
There are 100 pairs each with probability 0.01. We could
assign 6 bit codes (000000 through 011011) to 00 through 27,
and 7 bits (0111000 through 1111111) to 28 through 99. The
average code length is 6.72 bits per pair of digits, or 3.36 bpc.
Similarly, coding groups of 3 digits using 9 or 10 bits would
yield 3.3253 bpc.

http://ocarinanetworks.com/
http://mattmahoney.net/dc/dce.html
http://en.wikipedia.org/wiki/Morse_code
http://en.wikipedia.org/wiki/NTSC
http://www.faqs.org/faqs/compression-faq/part1/section-8.html
http://en.wikipedia.org/wiki/Huffman_coding

Shannon and Weaver (1949) proved that the best you can do
for a symbol with probability p is assign a code of length log2
1/p. In this example, log2 1/0.1 = 3.3219 bpc.
Shannon defined the information content or equivocation (now
called entropy) of a random variable X as its expected code
length. Suppose X may have values X1, X2,... and that each Xi
has probability p(i). Then the entropy of X is H(X) = E[log2
1/p(X)] = Î£i p(i) log2 1/p(i). For example, the entropy of the
digits of Ï€, according to our model, is 10 (0.1 log2 1/0.1) =
3.3219 bpc. There is no smaller code for this model that could
be decoded unambiguously.
The information content of a set of strings is at most the sum
of the information content of the individual strings. If X and Y
are strings, then H(X,Y) â‰¤ H(X) + H(Y). If they are equal,
then X and Y are independent. Knowing one string would tell
you nothing about the other.
The conditional entropy H(X|Y) = H(X,Y) - H(Y) is the
information content of X given Y. If X and Y are independent,
then H(X|Y) = H(X).
If X is a string of symbols x1x2...xn, then by the chain rule, p(X)
may be expressed as a product of the sequence of symbol
predictions conditioned on previous symbols: p(X) = Î i p(xi|x1..i-

1). Likewise, the information content H(X) of random string X is
the sum of the conditional entropies of each symbol given the
previous symbols: H(X) = Î£i H(xi|x1..i-1).
Entropy is both a measure of uncertainty and a lower bound on
compression. The entropy of a string is the limit to which you
can compress it. There are efficient coding methods, such as
arithmetic codes, which are for all practical purposes optimal in
this sense. It should be emphasized, however, that entropy can
only be calculated for a known probability distribution. But in
general, the model is not known.

1.3. Modeling is Not Computable
We modeled the digits of Ï€ as uniformly distributed and
independent. Given that model, Shannon's coding theorem
places a hard limit on the best compression that could be
achieved. However, it is possible to use a better model. The
digits of Ï€ are not really random. The digits are only unknown
until you compute them. An intelligent compressor might
recognize the digits of Ï€ and encode it as a description
meaning "the first million digits of pi", or as a program that
reconstructs the data when run. With our previous model, the
best we could do is (10

6
 log2 10)/8 â‰ˆ 415,241 bytes. Yet,

there are very small programs that can output Ï€, some as
small as 52 bytes.
The counting argument says that most strings are not
compressible. So it is a rather remarkable fact that most strings
that we care about, for example English text, images, software,
sensor readings, and DNA, are in fact compressible. These
strings generally have short descriptions, whether they are
described in English or as a program in C or x86 machine
code.
Solomonoff (1960, 1964), Kolmogorov (1965), and Chaitin
(1966) independently proposed a universal a-priori probability
distribution over strings based on their minimum description
length. The algorithmic probability KL(x) of a string x is defined
as the fraction of random programs in some language L that
output x, where each program M is weighted by 2

-|M|
 and |M| is

the length of M in bits. This probability is dominated by the
shortest such program.
Algorithmic probability and complexity of a string x depend on
the choice of language L, but only by a constant that is
independent of x. Suppose that y1 and y2 are encodings of x in
languages L1 and L2 respectively, i. e. L1(y1) = L2(y2) = x.
Any string y1 can be encoded in L2 by writing a compiler or
interpreter for L1 in L2 and appending it to y1. The size of this
compiler depends on L1 and L2 but not on x.
It is not proven that algorithmic probability is a true universal
prior probability. Nevertheless it is widely accepted on
empirical grounds because of its success in sequence

prediction and machine learning over a wide range of data
types. It represents a formalization of Occam's Razor. Occam
noted in the 14'th century, that (paraphrasing) "the simplest
answer is usually the correct answer". Occam's Razor is
universally applied in all of the sciences because we know from
experience that the simplest (shortest) theory that explains the
data tends to be the best predictor of future experiments.
To summarize, the best compression we can achieve for any
string x is to encode it as the shortest program M in some
language L that outputs x. Furthermore, the choice of L
becomes less important as the strings get longer. All that
remains is to find a procedure that finds M for any x in some
language L. However, Kolmogorov proved that there is no such
procedure in any language. Suppose there were. Then it would
be possible to describe "the first string that cannot be
described in less than a million bits" leading to the paradox that
we had just done so. (By "first", assume an ordering over
strings from shortest to longest, breaking ties
lexicographically).
Because optimal modeling is not computable, neither is
optimal compression. It is not hard to find difficult cases. For
example, consider the short description "a string of a million
zero bytes compressed with AES in CBC mode with key 'foo'".
To any program that does not know the key, the data looks
completely random and incompressible.

1.4. Compression is an Artificial Intelligence Problem
Optimal compression, if it were computable, would optimally
solve the artificial intelligence (AI) problem under two vastly
different definitions of "intelligence": the Turing test (Turing,
1950), and universal intelligence (Legg and Hutter, 2006).
Turing first proposed a test for AI to sidestep the
philosophically difficult question (which he considered
irrelevant) of whether machines could think. This test, now
known as the Turing test, is now widely accepted. The test is a
game played by two humans who have not previously met and
the machine under test. One human (the judge) communicates
with the other human (the confederate) and the machine
through a terminal. Both the confederate and the machine try
to convince the judge that each is human. If the judge cannot
guess correctly which is the machine 70% of the time after 10
minutes of interaction, then the machine is said to have AI.
Turing gave the following example of a possible dialogue:

Q: Please write me a sonnet on the subject of the Forth
Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give as answer)
105621.
Q: Do you play chess?
A: Yes.
Q: I have K at my K1, and no other pieces. You have only K
at K6 and R at R1. It is your move. What do you play?
A: (After a pause of 15 seconds) R-R8 mate.

It should be evident that compressing transcripts like this
requires the ability to compute a model of the form p(A|Q) =
p(QA)/P(Q) where Q is the context up to the current question,
and A is the response. But if a model could make such
predictions accurately, then it could also generate responses
indistinguishable from that of a human.
Predicting transcripts is a similar problem to predicting ordinary
written language. It requires in either case vast, real-world
knowledge. Shannon (1950) estimated that the information
content of written case-insensitive English without punctuation
is 0.6 to 1.3 bits per character, based on experiments in which
human subjects guessed successive characters in text with the
help of letter n-gram frequency tables and dictionaries. The
uncertainty is due not so much to variation in subject matter
and human skill as it is due to the fact that different probability

http://en.wikipedia.org/wiki/Entropy_%28information_theory%29
http://en.wikipedia.org/wiki/Chain_rule_%28probability%29
http://www.boo.net/%7Ejasonp/pipage.html
http://www.scholarpedia.org/article/Algorithmic_probability
http://en.wikipedia.org/wiki/Occam%27s_razor
http://en.wikipedia.org/wiki/Kolmogorov_complexity
http://en.wikipedia.org/wiki/Turing_test
http://en.wikipedia.org/wiki/Universal_Intelligence#Use_in_artificial_intelligence

assignments lead to the same observed guessing sequences.
Nevertheless, the best text compressors are only now
compressing near the upper end of this range.
Legg and Hutter proposed the second definition, universal
intelligence, to be far more general than Turing's human
intelligence. They consider the problem of reward-seeking
agents in completely arbitrary environments described by
random programs. In this model, an agent communicates with
an environment by sending and receiving symbols. The
environment also sends a reinforcement or reward signal to the
agent. The goal of the agent is to maximize accumulated
reward. Universal intelligence is defined as the expected
reward over all possible environments, where the probability of
each environment described by a program M is algorithmic,
proportional to 2

-|M|
. Hutter (2004, 2007) proved that the optimal

(but not computable) strategy for the agent is to guess after
each input that M is the shortest program consistent with past
observation.
Hutter calls this strategy AIXI. It is, of course, is just our
uncomputable compression problem applied to a transcript of
past interaction. AIXI may also be considered a formal
statement and proof of Occam's Razor. The best predictor of
the future is the simplest or shortest theory that explains the
past.

1.5. Summary
There is no such thing as universal compression, recursive
compression, or compression of random data.
Most strings are random. Most meaningful strings are not.
Given a probability distribution or prediction model, coding is a
solved problem.
Prediction is not computable. There is no test to prove
randomness or a lower bound on information content.
Prediction is an art and an artificial intelligence problem.
Compression measures prediction accuracy.

2. Benchmarks
A data compression benchmark measures compression ratio
over a data set, and sometimes memory usage and speed on a
particular computer. Some benchmarks evaluate size only, in
order to avoid hardware dependencies. Compression ratio is
often measured by the size of the compressed output file, or in
bits per character (bpc) meaning compressed bits per
uncompressed byte. In either case, smaller numbers are
better. 8 bpc means no compression.
Generally there is a 3 way trade off between size, speed, and
memory usage. The top ranked compressors by size require a
lot of computing resources.

2.1. Calgary Corpus
The Calgary corpus is the oldest compression benchmark still
in use. It was created in 1987 and described in a survey of text
compression models in 1989 (Bell, Witten and Cleary, 1989). It
consists of 14 files with a total size of 3,141,622 bytes as
follows:

 111,261 BIB - ASCII text in UNIX "refer" format - 725

bibliographic references.

 768,771 BOOK1 - unformatted ASCII text - Thomas Hardy:

Far from the Madding Crowd.

 610,856 BOOK2 - ASCII text in UNIX "troff" format -

Witten: Principles of Computer Speech.

 102,400 GEO - 32 bit numbers in IBM floating point

format - seismic data.

 377,109 NEWS - ASCII text - USENET batch file on a

variety of topics.

 21,504 OBJ1 - VAX executable program - compilation of

PROGP.

 246,814 OBJ2 - Macintosh executable program -

"Knowledge Support System".

 53,161 PAPER1 - UNIX "troff" format - Witten, Neal,

Cleary: Arithmetic Coding for Data Compression.

 82,199 PAPER2 - UNIX "troff" format - Witten: Computer

(in)security.

 513,216 PIC - 1728 x 2376 bitmap image (MSB first):

text in French and a line graph.

 39,611 PROGC - Source code in C - UNIX compress v4.0.

 71,646 PROGL - Source code in Lisp - system software.

 49,379 PROGP - Source code in Pascal - program to

evaluate PPM compression.

 93,695 TRANS - ASCII and control characters -

transcript of a terminal session.

Early tests sometimes used an 18 file version of the corpus
that included 4 addtional papers (PAPER3 through PAPER6).
Programs were often ranked by measuring bits per character
(bpc) on each file separately and reporting them individually or
taking the average. Simply adding the compressed sizes is
called a "weighted average" since it is weighted toward the
larger files.
The Calgary corpus is no longer widely used due to its small
size. However, it has been used since 1996 in an ongoing
compression challenge run by Leonid A. Broukhis with small
cash prizes. The best compression ratios established as of
Feb. 2010 are as follows.
Table. Calgary Compression Challenge History

 Size Date Name

 ------ ------- --------------------

 759,881 Sep 1997 Malcolm Taylor

 692,154 Aug 2001 Maxim Smirnov

 680,558 Sep 2001 Maxim Smirnov

 653,720 Nov 2002 Serge Voskoboynikov

 645,667 Jan 2004 Matt Mahoney

 637,116 Apr 2004 Alexander Ratushnyak

 608,980 Dec 2004 Alexander Ratushnyak

 603,416 Apr 2005 Przemyslaw Skibinski

 596,314 Oct 2005 Alexander Ratushnyak

 593,620 Dec 2005 Alexander Ratushnyak

 589,863 May 2006 Alexander Ratushnyak

The rules of the Calgary challenge specify that the
compressed size include the size of the decompression
program, either as a Windows or Linux executable file or as
source code. This is to avoid programs that cheat by hiding
information from the corpus in the decompression program.
Furthermore, the program and compressed files must either be
packed in an archive (in one of several specified formats), or
else 4 bytes plus the length of each file name is added. This is
to prevent cheating by hiding information in the file names and
sizes. Without such precautions, programs like barf could claim
to compress to zero bytes.
Submissions prior to 2004 are custom variants of compressors
by the authors based on PPM algorithms (rk for Taylor, slim for
Voskoboynikov, ppmn for Smirnov). Subsequent submissions
are variants of the open source paq6, a context mixing
algorithm. For comparison, zip -9 (InfoZIP 2.32., option -9 for
best compression) compresses the Calgary corpus to
1,020,495 bytes, not including the size of the unzip program.

2.2. Large Text Compression Benchmark
The Large Text Compression Benchmark consists of a single
Unicode encoded XML file containing a dump of Wikipedia text
from Mar. 3, 2006, truncated to 10

9
 bytes. Its stated goal is to

encourage research into artificial intelligence, specifically,
natural language processing. As of Feb. 2010, 128 different
programs (889 including different versions and options) were
evaluated for compressed size (including the decompression
program source or executable and any other needed files as a
zip archive), speed, and memory usage. The benchmark is
open, meaning that anyone can submit results.
Programs are ranked by compressed size with options
selecting maximum compression where applicable. The best
result obtained is 127,784,888 bytes by D. Shkarin for a
customized version of durilca using 13 GB memory. It took
1398 seconds to compress and 1797 seconds to decompress
using a size-optimized decompression program on a 3.8 GHz
quad core Q9650 with 16 GB memory under 64 bit Windows
XP Pro on July 21, 2009. The data was preprocessed with a

http://en.wikipedia.org/wiki/Calgary_Corpus
http://mailcom.com/challenge/
file:///Z:\DCE_2010-02-26\barf.html
file:///Z:\DCE_2010-02-26\paq.html
http://www.info-zip.org/
file:///Z:\DCE_2010-02-26\text.html

custom dictionary built from the benchmark and encoded with
order 40 PPM. durilca is a modified version of ppmonstr by the
same author. ppmonstr is in turn a slower but better
compressing ppmd program which is used for maximum
compression in several archivers such as rar, WinZip, 7zip,
and freearc.
By comparison, zip -9 compresses to 322,649,703 bytes in
104 seconds and decompresses in 35 seconds using 0.1 MB
memory. It is ranked 92'nd.

The benchmark shows a 3 way trade off between compressed
size, speed, and memory usage. The two graphs below show
the Pareto frontier, those compressors for which no other
compressors both compress smaller and faster (or smaller and
use less memory). The graphs are from Aug. 2008, but the
current data shows a similar trend. In particular, no single
algorithm (shown in parenthesis) is the "best".

Pareto frontier: compressed size vs. compression time as of Aug. 18, 2008 (options for maximum compression).

Pareto frontier: compressed size vs. memory as of Aug. 18, 2008 (options for maximum compression).

Note that speed tests may be run on different machines, and that only the options for maximum compression for each program
are used. Nevertheless, the general trend remains valid. Individual compressors often have options that allow the user to make
the same 3 way trade off.

2.3. Hutter Prize
The Hutter prize is based on the first 10

8
 bytes (the file enwik8)

of the Large Text Compression benchmark with similar rules
and goals. It is a contest in which prize money (500 euros per
1% gain) is awarded for improvements of 3% or more over the
previous submission, subject to time and memory limits on the
test computer. The best result is 15,949,688 bytes for an
archive and a decompresser submitted by A. Ratushnyak on
May 23, 2009. It requires 7608 seconds and 936 MB memory
to decompress on a 2 GHz dual core T3200 under 32 bit
Windows Vista. The submission is based on two open source,
context mixing programs paq8hp12 and lpaq9m with a custom
dictionary for preprocessing.
By comparison, zip -9 compresses the same data to
36,445,373 bytes and uncompresses in 3.5 seconds using 0.1
MB memory.

2.4. Maximum Compression
The maximum compression benchmark has two parts: a set of
10 public files totaling 53 MB, and a private collection of 510
files totaling 301 MB. In the public data set (SFC or single file
compression), each file is compressed separately and the
sizes added. Programs are ranked by size only, with options
set for best compression individually for each file. The set
consists of the following 10 files:

 842,468 a10.jpg - a high quality 1152 x 864

baseline JPEG image of a fighter jet.

 3,870,784 acrord32.exe - x86 executable code - Acrobat

Reader 5.0.

 4,067,439 english.dic - an alphabetically sorted list of

354,941 English words.

 4,526,946 FlashMX.pdf - PDF file with embedded JPEG and

zipped BMP images.

20,617,071 fp.log - web server log, ASCII text.

 3,782,416 mso97.dll - x86 executable code from

Microsoft Office.

 4,168,192 ohs.doc - Word document with embedded JPEG

images.

 4,149,414 rafale.bmp - 1356 x 1020 16 bit color image

in 24 bit RGB format.

 4,121,418 vcfiu.hlp - OCX help file - binary data with

embedded text.

 2,988,578 world95.txt - ASCII text - 1995 CIA World

Factbook.

The top ranked program as of Dec. 31, 2009 with a total size
of 8,813,124 bytes is paq8px, a context mixing algorithm with
specialized models for JPEG images, BMP images, x86 code,
text, and structured binary data. WinRK 3.1.2, another context
mixing algorithm, is top ranked on 4 of the files (txt, exe, dll,
pdf). WinRK uses a dictionary which is not included in the total
size. 208 programs are ranked. zip 2.2 is ranked 163 with a
size of 14,948,761.
In the second benchmark or MFC (multiple file compression),
programs are ranked by size, compression speed,
decompression speed, and by a formula that combines size
and speed with time scaled logarithmically. The data is not
available for download. Files are compressed together to a
single archive. If a compressor cannot create archives, then
the files are collected into an uncompressed archive (TAR or
QFC), which is compressed.
In the MFC test, paq8px is top ranked by size. freearc is top
ranked by combined score, followed by nanozip, winrar, and
7zip. All are archivers that detect file type and apply different
algorithms depending on type.

2.5. Generic Compression Benchmark
The Generic Compression Benchmark has the goal of
evaluating compression algorithms in the context of universal
prediction or intelligence, as defined by Legg and Hutter
(2006). By this definition, data sources are assumed to have a
universal Solomonoff distribution, i.e. generated by random
programs with a preference for smaller or simpler programs.
The evidence for such a distribution is the success of applying

Occam's Razor to machine learning and to science in general:
the simplest theories that fit the observed data tend to be the
best predictors. The purpose of the test is to find good
compression algorithms that are not tuned to specific file types.
The benchmark does not publish any test data. Rather, it
publishes a program to generate the data from a secret seed or
an internally hardware generated random number. The data
consists of the bit string outputs of one million random Turing
machines, truncated to 256 bits and packed into null
terminated byte strings. The average output size is about 6.5
MB. The test allows public verification while eliminating the
need to measure the decompresser size because it is not
possible to hide the test data in the decompresser without
knowing the cryptographic random number seed. The test
produces repeatable results with about 0.05% accuracy.
Programs are ranked by the ratio of compressed output to the
compressed output of a reference compressor (ppmonstr) to
improve repeatability.
Unfortunately the benchmark fails to completely eliminate the
problem of tuning compressors to public benchmarks. The top
ranked program is a stationary context mixing model
configuration implemented in zpaq using a preprocessor by J.
Ondrus that splits each string into an incompressible prefix and
a bit repeat instruction. Its score is 0.8750, compared to 1.3124
for zip -9. Generally, however, the rank order of compressors is
similar to that of other benchmarks.

2.6. Other Benchmarks
Some other benchmarks are mentioned briefly.
Compression Ratings by Sami Runsas ranks programs on 5.4
GB of various data types from public sources using a score
that combines size and speed, similar to the Maximum
Compression MFC test, but with minimum speed requirements.
The benchmark includes a calculator that allows the user to
rank compressors using different weightings for the importance
of size, compression speed, and decompression speed. The
top ranked programs for the default settings as of Jan. 2010
are nanozip followed by freearc, CCM, flashzip, and 7-zip.
Runsas is the author of nanozip.
Squeeze Chart by Stephen Busch, ranks programs on 6.4 GB
of mostly private data of various types by size only. The top
ranked is paq8px_v67 as of Dec. 28, 2009.
Monster of Compression by N. F. Antonio, ranks programs by
size on 1,061,420,156 bytes of mostly public data of various
types with a 40 minute time limit. There are separate tests for
single file compressors and archivers. As of Dec. 20, 2009 the
top ranked archiver is nanozip 0.7a and the top ranked file
compressor is ccmx 1.30c. Both use context mixing.
UCLC by Johan de Bock contains several benchmarks of
public data for compressors with a command line interface
(which is most of them). As of Feb. 2009, paq8i or paq8p was
top ranked by size on most of them.

3. Coding
A code is an assignment of bit strings to symbols such that the
strings can be decoded unambiguously to recover the original
data. The optimal code for a symbol with probability p will have
a length of log2 1/p bits. Several efficient coding algorithms are
known.

3.1. Huffman Coding
Huffman (1952) developed an algorithm that calculates an
optimal assignment over an alphabet of n symbols in O(n) time.
deflate (zip) and bzip2 use Huffman codes. However, Huffman
codes are inefficient in practice because code lengths must be
rounded to a whole number of bits. If a symbol probability is not
a power of 1/2, then the code assignment is less than optimal.
This coding inefficiency can be reduced by assigning
probabilities to longer groups of symbols but only at the cost of
an exponential increase in alphabet size, and thus in run time.

http://prize.hutter1.net/
http://www.maximumcompression.com/
file:///Z:\DCE_2010-02-26\uiq\
file:///Z:\
http://compressionratings.com/
http://www.squeezechart.com/
http://heartofcomp.altervista.org/MOC/MOC.htm
http://uclc.info/
http://en.wikipedia.org/wiki/Huffman_coding

The algorithm is as follows. We are given an alphabet and a
probability for each symbol. We construct a binary tree by
starting with each symbol in its own tree and joining the two
trees that have the two smallest probabilities until we have one
tree. Then the number of bits in each Huffman code is the
depth of that symbol in the tree, and its code is a description of
its path from the root (0 = left, 1 = right). For example, suppose
that we are given the alphabet {0,1,2,3,4,5,6,7,8,9} with each
symbol having probability 0.1. We start with each symbol in a
one-node tree:
 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

Because each small tree has the same probability, we pick any
two and combine them:
 .2

 / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

Continuing,
 .2 .2 .2 .2

 / \ / \ / \ / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

At this point, 8 and 9 have the two lowest probabilities so we
have to choose those:
 .2 .2 .2 .2 .2

 / \ / \ / \ / \ / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

Now all of the trees have probability .2 so we choose any pair
of them:
 .4

 / \

 / \

 / \

 .2 .2 .2 .2 .2

 / \ / \ / \ / \ / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

We choose any two of the three remaining trees with
probability .2:
 .4 .4

 / \ / \

 / \ / \

 / \ / \

 .2 .2 .2 .2 .2

 / \ / \ / \ / \ / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

Now the two smallest probabilities are .2 and one of the .4:
 .6

 / \

 / \

 / \

 .4 .4 \

 / \ / \ \

 / \ / \ \

 / \ / \ \

 .2 .2 .2 .2 .2

 / \ / \ / \ / \ / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

Now the two smallest are .4 and .6. After this step, the tree is
finished. We can label the branches 0 for left and 1 for right,
although the choice is arbitrary.
 1.0

 / \

 / \

 / \

 / \

 0 / \ 1

 / \

 / \

 / .6

 / / \

 / 0 / \ 1

 / / \

 .4 .4 \

 / \ / \ \

 0 / \ 1 0 / \ 1 \

 / \ / \ \

 .2 .2 .2 .2 .2

 / \ / \ / \ / \ / \

 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

 0 1 2 3 4 5 6 7 8 9

From this tree we construct the code:

Symbol Code

------ ----

 0 000

 1 001

 2 010

 3 011

 4 1000

 5 1001

 6 1010

 7 1011

 8 110

 9 111

A code may be static or dynamic. A static code is computed by
the compressor and transmitted to the decompresser as part of
the compressed data. A dynamic code is computed by the
compressor and periodically updated, but not transmitted.
Instead, the decompresser reconstructs the code using exactly
the same algorithm using the previously decoded data to
estimate the probabilities. Neither method compresses better
because any space saved by not transmitting the model is paid
back by having less data with which to estimate probabilities.
Huffman codes are typically static, mainly for speed. The
compressor only needs to compute the code once, using the
entire input to compute probabilities. To transmit a Huffman
table, it is only necessary to send the size of each symbol, for
example: (3,3,3,3,4,4,4,4,3,3). Both the compressor and
decompresser would then assign codes by starting with the
shortest symbols, counting up from 0, and appending a 0 bit
whenever the code gets longer. This would result in the
following different but equally effective code:

Symbol Size Code

------ ---- ----

 0 3 000

 1 3 001

 2 3 010

 3 3 011

 8 3 100

 9 3 101

 4 4 1100

 5 4 1101

 6 4 1110

 7 4 1111

For file compression, Huffman coded data still needs to be
packed into bytes. JPEG packs bits in MSB (most significant
bit) to LSB (least significant bit) order. For example, the codes

00001 00111 would be packed as 00001001 11...... . The
deflate format used in zip, gzip, and png files packs bits in LSB

to MSB order, as if each byte is written backward, i.e. 10010000

......11 .
One other complication is that the last byte has to be padded
in such a way that it is not interpreted as a Huffman code.
JPEG does this by not assigning any symbol to a code of all 1
bits, and then padding the last byte with 1 bits. Deflate handles
this by reserving a code to indicate the end of the data. This
tells the decoder not to decode the remaining bits of the last
byte.

3.2. Arithmetic Coding

Huffman coding has the drawback that code lengths must be a
whole number of bits. This effectively constrains the model to
probabilities that are multiples of 1/2. The size penalty for
modeling errors is roughly proportional to the square of the
error. For example, a 10% error results in a 1% size penalty.
The penalty can be large for small codes. For example, the
only possible ways to Huffman code a binary alphabet is to
code each bit as itself (or its opposite), resulting in no
compression.

http://www.gzip.org/zlib/rfc-deflate.html

Arithmetic coding (Rissanen, 1976), also called range coding,
does not suffer from this difficulty. Let P be a model, meaning
that for any string x, P(x) is the probability of that string. Let P(<
x) be the sum of the probabilities of all strings lexicographically
less than x. Let P(â‰¤ x) = P(< x) + P(x). Then the arithmetic
code for a string x is the shortest binary number y such that
P(< x) â‰¤ y < P(â‰¤ x). Such a number can always be found
that is no more than 1 bit longer than the Shannon limit log2
1/P(x).
An arithmetic code can be computed efficiently by expressing
P(x) as a product of successive symbol predictions by the
chain rule, P(x) = Î i P(xi | x1x2...xi-1) where xi means the i'th
symbol (bit or character) in x. Then the arithmetic code can be
computed by updating a range [low, high) (initially [0, 1)) for
each symbol by dividing the range in proportion to the
probability distribution for that symbol. Then the portion of the
range corresponding to the symbol to be coded is used to
update the range. As the range shrinks, the leading bits of low
and high match and can be output immediately because the
code y must be between them. The decompresser is able to
decode y by making an identical sequence of predictions and
range reductions.
Most modern data compressors use arithmetic coding. Early
compressors used Huffman coding because arithmetic coding
was patented and because its implementation required
multiplication operations, which was slow on older processors.
Neither of these issues are relevant today because the
important patents have expired and newer processors have
fast multiply instructions (faster than memory access).
The most common arithmetic coders code one byte at a time
(PPM) or one bit at a time (CM, DMC). Free source code with
no licensing restrictions for a bytewise encoder can be found in
the source code for ppmd (D. Shkarin). Bitwise coders licensed
under GPL can be found in the source code for PAQ based
compressors including FPAQ, LPAQ, and ZPAQ, the BWT
compressor BBB, and the symbol ranking compressor SR2.
The simplest of these is the order 0 coder fpaq0.
The following is the arithmetic coder from zpaq 1.10 It encodes
bit y (0 or 1) with probability p = P(1) * 65536 (a scaled 16 bit
number) and codes to FILE* out. The encoder range is
represented by two 32 bit integers (unsigned int) low and high,
which are initially 1 and 0xffffffff respectively. After the range is
split, a 1 is coded in the lower part of the range and a 0 in the
upper part. After the range is split and reduced, it is normalized
by shifting out any leading bytes that are identical between low
and high. The low bits shifted in are all 0 bits for low and all 1
bits for high.

 // Initial state

 unsigned int low = 1, high = 0xffffffff;

 // Encode bit y with probability p/65536

 inline void Encoder::encode(int y, int p) {

 assert(out); // output file

 assert(p>=0 && p<65536);

 assert(y==0 || y==1);

 assert(high>low && low>0);

 unsigned int mid=low+((high-low)>>16)*p+((((high-

low)&0xffff)*p)>>16); // split range

 assert(high>mid && mid>=low);

 if (y) high=mid; else low=mid+1; // pick half

 while ((high^low)<0x1000000) { // write identical

leading bytes

 putc(high>>24, out); // same as low>>24

 high=high<<8|255;

 low=low<<8;

 low+=(low==0); // so we don't code 4 0 bytes in a

row

 }

 }

The range split is written to avoid 32 bit arithmetic overflow. It
is equivalent to:
 unsigned int mid=low+((unsigned long long)(high-

low)*p>>16);

where (unsigned long long) is a 64 bit unsigned type, which
not all compilers support. The initialization of low to 1 instead of
0 and the statement
 low+=(low==0);

discard a tiny bit of the range to avoid writing 4 consecutive 0
bytes, which the ZPAQ compressor uses to mark the end of
the encoded data so it can be found quickly without decoding.
This is not a requirement in general. It is not used in the rest of
the PAQ series. The decoder looks like this:

 // Initial state

 unsigned int low=1, high=0xffffffff, curr;

 for (int i=0; i<4; ++i)

 curr=curr<<8|getc(in); // first 4 bytes of input

 // Return decoded bit from file 'in' with probability

p/65536

 inline int Decoder::decode(int p) {

 assert(p>=0 && p<65536);

 assert(high>low && low>0);

 if (curr<low || curr>high) error("archive corrupted");

 assert(curr>=low && curr<=high);

 unsigned int mid=low+((high-low)>>16)*p+((((high-

low)&0xffff)*p)>>16); // split range

 assert(high>mid && mid>=low);

 int y=curr<=mid;

 if (y) high=mid; else low=mid+1; // pick half

 while ((high^low)<0x1000000) { // shift out identical

leading bytes

 high=high<<8|255;

 low=low<<8;

 low+=(low==0);

 int c=getc(in);

 if (c==EOF) error("unexpected end of file");

 curr=curr<<8|c;

 }

 return y;

 }

The decoder receives as input p, the 16 bit probability that the
next bit is a 1, and returns the decoded bit. The decoder has
one additional variable in its state, the 32 bit integer curr, which
is initialized to the first 4 bytes of compressed data. Each time
the range is rescaled, another byte is read from FILE* in. high
and low are initialized as in the encoder.
One additional detail is how to handle the end of file. Most of
the PAQ series compressors encode the file size separately
and perform 8 encoding operations per byte. After the last
encoding operation, the 4 bytes of either high or low or some
value in between must be flushed to the archive because the
decoder will read these 4 bytes in.
ZPAQ encodes 9 bits per byte, using a leading 1 bit modeled
with probability p = 0 to mark the end of file. The effect on the
encoder is to set mid = low and cause 4 bytes to be flushed.
After that, 4 zero bytes are written to mark the end of the
compressed data. When the end of file bit is decoded, the
decoder reads these 4 zero bytes into curr, resulting in low = 1,
curr = 0, high = 0xffffffff. Any further decoding would result in
an error because the condition low â‰¤ curr â‰¤ high fails.

3.3. Asymmetric Binary Coding
Most high end compressors use arithmetic coding. However,
another possibility with the same theoretical coding and time
efficiency for bit strings is asymmetric binary coding or ABC
(Duda, 2007). An asymmetric coder has a single n-bit integer
state variable y, as opposed to two variables (low and high) in
an arithmetic coder. This allows a lookup table implementation.
A bit y (0 or 1) with probability p = P(y = 1) (0 < p < 1, a
multiple of 2

-n
) is coded in state x, initially 2

n
:

 if y = 0 then x := ceil((x+1)/(1-p)) - 1

 if y = 1 then x := floor(x/p)

To decode, given x and p
 y = ceil((x+1)*p) - ceil(x*p) (0 if fract(x*p) < 1-p,

else 1)

 if y = 0 then x := x - ceil(x*p)

 if y = 1 then x := ceil(x*p)

x is maintained in the range 2
n
 to 2

n+1
 - 1 by writing the low bits

of x prior to encoding y and reading into the low bits of x after

http://en.wikipedia.org/wiki/Arithmetic_coding
http://en.wikipedia.org/wiki/Arithmetic_coding#US_patents_on_arithmetic_coding
http://www.compression.ru/ds/
file:///Z:\DCE_2010-02-26\
file:///Z:\DCE_2010-02-26\fpaq0.cpp
file:///Z:\

decoding. Because compression and decompression are
reverse operations of each other, they must be performed in
reverse order by storing the predictions and coded bits in a
stack in either the compressor or the decompresser.
The coder is implemented in the order-0 compressors fpaqa,
fpaqb, and fpaqc and the context mixing compressor lpaq1a
from the PAQ series. fpaqa uses lookup tables for both
compression and decompression. It uses a 10 bit state and the
probability is quantized to 7 bits on a nonlinear scale (finer near
0 and 1 and coarse near 1/2). The stack size is 500,000.
Increasing these numbers would result in better compression
at the expense of a larger table. fpaqb uses direct calculations
except for division, which uses a table of inverses because
division is slow. fpaqc is fpaqb with some speed optimizations.
The coder for fpaqc is used in lpaq1a (a context mixing
program), replacing the arithmetic coder in lpaq1.
Although a lookup table implementation might be faster on
some small processors, it is slower on modern computers
because multiplication is faster than random memory access.
Some benchmarks are shown for enwik8 (100 MB text) on a
2.0 GHz T3200 processor running on one of two cores. Ratio is
fraction of original size. Compression and decompression
times are nanoseconds per byte.
 Ratio Comp Decomp Coder

 ------- ---- ---- -----

 fpaqa .61310 247 238 ABC lookup table

 fpaqb .61270 244 197 ABC direct

calculation

 fpaqc .61270 246 173 ABC direct

calculation

 fpaqa -DARITH .61280 130 112 arithmetic (fpaqa

compiled with -DARITH)

For high end compressors, CPU time and memory are
dominated by the model, so the choice of coder makes little
difference. lpaq1 is a context mixing compressor, a
predecessor of lpaq9m, ranked third of 127 on the large text
benchmark as of Feb. 2010. lpaq1a is the same except that the
arithmetic coder was replaced by the asymmetric binary coder
from fpaqb. (Timed on a 2.188 GHz Athlon-64 3500+).

 Ratio Comp Decomp Coder

 ------- ---- ---- -----

 lpaq1a .19755 3462 3423 ABC direct

calculation (fpaqb)

 lpaq1 .19759 3646 3594 arithmetic

The arithmetic coder in lpaq1 and fpaqa -DARITH compresses
slightly worse than the ABC coder because it uses 12 bits of
precision for the probability, rather than 16 bits as in ZPAQ.

4. Modeling

A model is an estimate of the probability distribution of inputs
to a compressor. Usually this is expressed as a sequence of
predictions of successive symbols (bits, bytes, or words) in the
input sequence given the previous input as context. Once we
have a model, coding is a solved problem. But (as proved by
Kolmogorov) there is no algorithm for determining the best
model. This is the hard problem in data compression.
A model can be static or adaptive. In the static case, the
compressor analyzes the input, computes the probability
distribution for its symbols, and transmits this data to the
decompresser followed by the coded symbols. Both the
compressor and decompresser select codes of the appropriate
lengths using identical algorithms. This method is often used
with Huffman coding.
Typically the best compressors use dynamic models and
arithmetic coding. The compressor uses past input to estimate
a probability distribution (prediction) for the next symbol without
looking at it. Then it passes the prediction and symbol to the
arithmetic coder, and finally updates the model with the symbol
it just coded. The decompresser makes an identical prediction

using the data it has already decoded, decodes the symbol,
then updates its model with the decoded output symbol. The
model is unaware of whether it is compressing or
decompressing. This is the technique we will use in the rest of
this chapter.

4.1. Fixed Order Models
The simplest model is a fixed order model. An order n model
inputs the last n bytes or symbols (the context) into a table and
outputs a probability distribution for the next symbol. In the
update phase, the predicted symbol is revealed and the table is
updated to increase its probability when the same context next
appears. An order 0 model uses no context.

4.1.1. Bytewise Encoding

A probability distribution is typically computed by using a
counter for each symbol in the alphabet. If the symbols are
bytes, then the size of the alphabet is 256. The prediction for
each symbol is the count for that symbol divided by the total
count. The update procedure is to increment the count for that
symbol. If the arithmetic coder codes one byte at a time, then
you pass the array of counts and the total to the arithmetic
coder. For compression, you also pass the byte to be coded.
For decompression, it returns the decoded byte. The procedure
looks like this:

 const int CONTEXT_SIZE = 1 << (n*8); // for order n

 int count[CONTEXT_SIZE][256] = {{0}}; // symbol counts

 int context = 0; // last n bytes

packed together

 // Update the model with byte c

 void update(int c) {

 ++count[context][c];

 context = (context << 8 | c) % CONTEXT_SIZE;

 }

 // compress byte c

 void compress(int c) {

 encode(count[context], c); // predict and encode

 update(c);

 }

 // decompress one byte and return it

 int decompress() {

 int c = decode(count[context]);

 update(c);

 return c;

 }

The functions encode() and decode() are assumed to be
encoding and decoding procedures for a bytewise arithmetic
coder. They each take an array of 256 counts and divide the
current range in proportion to those counts. encode() then
updates the range to the c'th subrange. decode() reads the
compressed data and determines that it is bounded by the c'th
range and returns c. The update() procedure stores the last n
bytes in the low bits of the context.
There are a few problems with this method. First, what
happens if a byte has a probability of zero? An ideal encoder
would give it a code of infinite size. In practice, the encoder
would fail. One fix is to initialize all elements of count to 1.
Sometimes it improves compression if the initial count were
smaller, say 0.5 or 0.1. This could be done effectively by
increasing the increment to, say, 2 or 10.
A second problem is that a count can eventually overflow. One
solution is that when a count becomes too large, to rescale all
of the counts by dividing by 2. Setting a small upper limit
(typically 30 to several hundred) can improve compression of
data with blocks of mixed types (like text with embedded
images) because the statistics reflect recent input. This is an
adaptive or nonstationary model. Data with uniform statistics
such as pure text are compressed better with stationary
models, where the counts are allowed to grow large. In this
case, probabilities depend equally on all of the past input.

file:///Z:\

A third problem is that the table of counts grows exponentially
with the context order. Some memory can be saved by
changing count[] to unsigned char and limiting counts to 255.
Another is to replace the context with a hash, for example:

 const int k = 5; // bits of hash per byte

 const int CONTEXT_SIZE = 1 << (n*k); // order n

 ...

 context = (context * (3 << k) + c) % CONTEXT_SIZE; //

update context hash

The multiplier can be any odd number left shifted by another
number k in the range 1 through 8. Then the last nk bits of
context depend on the last n bytes of input. A larger k will result
in better compression at the expense of more memory.
A fourth problem is that bytewise arithmetic coding is
inefficient. The decoder must compute 256 range intervals to
find the one containing the compressed data. This could be
solved by using cumulative counts, i.e. count[context][c] is the
sum of counts for all byte values â‰¤ c, but that only moves
the inefficiency to the update() function, which must increment
up to 256 values. This problem is solved by encoding one bit at
a time using the bitwise encoder like the one described in
section 3.2.

4.1.2. Bitwise encoding

The idea is to encode one bit at a time by using the previous
bits of the current byte as additional context. Only two values
are stored: a count of ones, count1, and a total count. The
prediction is count1/count. The update procedure is to
increment count and to increment count1 if the bit is 1. We
handle zero probabilities, overflow, and large contexts as
before.
Alternatively, we can avoid a (slow) division operation by
storing the prediction directly. Each bitwise context is
associated with a prediction that the next bit will be a 1 (initially
1/2) and an update count (initially 0). The update rate is initially
fast and decreases as the count is incremented, resulting in a
stationary model. Alternatively, the count can be bounded,
resulting in an adaptive model.

 // Prediction and count for one bitwise context

 struct Model {

 double prediction; // between 0 and 1 that next bit

will be a 1

 int count; // number of updates

 Model(): prediction(0.5), count(0) {}

 };

 Model model[CONTEXT_SIZE][256]; // context, bit_context

-> prediction and count

 int context = 0; // bytewise order n

context

 // Compress byte c in MSB to LSB order

 void compress(int c) {

 for (int i=7; i>=0 --i) {

 int bit_context = c+256 >> i+1;

 int bit = (c >> i) % 2;

 encode(bit, model[context][bit_context].prediction);

 update(bit, model[context][bit_context]);

 }

 context = (context << 8 | c) % CONTEXT_SIZE;

 }

 // Decompress and return a byte

 int decompress() {

 int c; // bit_context

 int bit;

 for (c = 1; c < 256; c = c * 2 + bit) {

 bit = decode(model[context][c].prediction);

 update(bit, model[context][c]);

 }

 c -= 256; // decoded byte

 context = (context << 8 | c) % CONTEXT_SIZE;

 return c;

 }

 // Update the model

 void update(int bit, Model& m) {

 const double DELTA = 0.5;

 const int LIMIT = 255;

 if (m.count < LIMIT) ++m.count;

 m.prediction += (bit - m.prediction) / (m.count +

DELTA);

 }

The compress() function takes a byte c and compresses it one
bit at a time starting with the most significant bit. At each of the
8 steps, the previously coded bits are packed into a number in
the range (1..255) as a binary number 1 followed by up to 7
earlier bits. For example, if c = 00011100, then bit_context
takes the 8 successive values 1, 10, 100, 1000, 10001,
100011, 1000111, 10001110. In decompress(), c plays the
same role. After 8 decoding operations it has the value
100011100 and the leading 1 is stripped off before being
returned.
As before, the context may also be a hash.
The update function computes the prediction error (bit -
m.prediction) and adjusts the prediction in inverse proportion to
the count. The count is incremented up to a maximum value. At
this point, the model switches from stationary to adaptive.
DELTA and LIMIT are tunable parameters. The best values
depend on the data. A large LIMIT works best for stationary
data. A smaller LIMIT works better for mixed data types. On
stationary sources, the compressed size is typically larger by
1/LIMIT. The choice of DELTA is less critical because it only
has a large effect when the data size is small (relative to the
model size). With DELTA = 1, a series of zero bits would result
in the prediction sequence 1/2, 1/4, 1/6, 1/8, 1/10. With DELTA
= 0.5, the sequence would be 1/2, 1/6, 1/10, 1/14, 1/18. Cleary
and Teahan (1995) measured the actual probabilities in
English text and found a sequence near 1/2, 1/30, 1/60, 1/90...
for zeros and 1/2, 19/20, 39/40, 59/60... for consecutive ones.
This would fit DELTA around 0.07 to 0.1.
A real implementation would use integer arithmetic to
represent fixed point numbers, and use a lookup table to
compute 1/(m.count + DELTA) in update() to avoid a slow
division operation. ZPAQ packs a 22 bit prediction and 10 bit
count into a 32 bit model element. As a further optimization, the
model is stored as a one dimensional array aligned on a 64
byte cache line boundary. The bytewise context is updated
once per byte as usual, but the extra bits are expanded in
groups of 4 in a way that causes only two cache misses per
byte. The leading bits are expanded to 9 bits as shown below,
then exclusive-ORed with the bytewise context address.

 0 0000 0001

 0 0000 001x

 0 0000 01xx

 0 0000 1xxx

 1 xxxx 0001

 1 xxxx 001x

 1 xxxx 01xx

 1 xxxx 1xxx

ZPAQ fixes DELTA at 1/2 but LIMIT is configurable to 4, 8,
12,..., 1020. The following table shows the effect of varying
LIMIT for an order 0 model on 10

6
 digits of Ï€ (stationary) and

orders 0 through 2 on the 14 file Calgary corpus concatenated
into a single data stream (nonstationary). Using a higher order
model can improve compression at the cost of memory.
However, direct lookup tables are not practical for orders
higher than about 2. The order 2 model in ZPAQ uses 134 MB
memory. The higher orders have no effect on Ï€ because the
digits are independent (short of actually computing Ï€).

 pi Calgary corpus

 LIMIT order-0 order-0 order-1 order-2

 ----- ------- --------- --------- ---------

 4 455,976 1,859,853 1,408,402 1,153,855

 8 435,664 1,756,081 1,334,979 1,105,621

 16 425,490 1,704,809 1,306,838 1,089,660

 32 420,425 1,683,890 1,304,204 1,091,029

 64 417,882 1,680,784 1,315,988 1,101,612

 128 416,619 1,686,478 1,335,080 1,115,717

 256 415,990 1,696,658 1,357,396 1,129,790

 512 415,693 1,710,035 1,379,823 1,141,800

 1020 415,566 1,726,280 1,399,988 1,150,737

4.1.3. Indirect Models

An indirect context model answers the question of how to map
a sequence of bits to a prediction for the next bit. Suppose you
are given a sequence like 0000000001 and asked to predict
what bit is next. If we assume that the source is stationary,
then the answer is 0.1 because 1 out of 10 bits is a 1. If we
assume a nonstationary source then the answer is higher
because we give preference to newer history. How do we
decide?
An indirect model learns the answer by observing what
happened after similar sequences appeared. The model uses
two tables. The first table maps a context to a bit history, a
state representing a past sequence of bits. The second table
maps the history to a prediction, just like a direct context
model.
Indirect models were introduced in paq6 in 2004 A bit history
may be written in the form (n0, n1, LB) which means that there
have been n0 zeros, n1 ones, and that the last bit was LB (0 or
1). For example, the sequence 00101 would result in the state
(3, 2, 1). The initial state is (0, 0, -) meaning there is no last bit.
In paq6 and its derivatives (including ZPAQ), a bit history is
stored as 1 byte, which limits the number of states to 256. The
state diagram below shows the allowed states in ZPAQ with n0
on the horizontal axis and n1 on the vertical axis. Two dots (:)
represents two states for LB=0 and LB=1. A single dot
represents a single state where LB can take only one value
because the state is reachable with either a 0 or 1 but not both.
(LB is the larger of the two counts). In general, an update with
a 0 moves to the right and an update with a 1 moves up. The
initial state is marked with a 0 in the lower left corner. The
diagram is symmetric about the diagonal. There are a total of
219 states.
 n1

 48 .

 47 .

 46 .

 :

 23 .

 22 .

 21 .

 20 ..

 19 ..

 18 ..

 17 ..

 16 ..

 15 ...

 14 ...

 13 ...

 12 ...

 11 ...

 10 ...

 9 ...

 8

 7 .:::

 6 .::::

 5 .:::::

 4 .::::::

 3 .:::::::.

 2 .:::::::........

 1 .:::::::..

 0 0....................

 012345678 15 20 48 n0

There are some exceptions to the update rule. Since it is not
possible to go off the end of the diagram, the general rule is to
move back to the nearest allowed state in the direction of the
lower left corner (preserving the ratio of n0 to n1). There is
another rule intended to make the model somewhat
nonstationary, and that is when one of the counts is large and
the other is incremented, then the larger count is reduced. The
specific rule from the ZPAQ standard is that if the larger count
is 6 or 7 it is decremented, and if it is larger than 7 then it is
reduced to 7. This rule is applied first, prior to moving

backward from an invalid state. For example, a sequence of 10
zeros, 43 ones and a zero results in:

 Input State Rule

 ---------- -------- ------

 0000000000 (10,0,0) Normal case, move right

 1 (7,1,1) Discount larger count

 1 (6,2,1) Discount

 1 (5,3,1) Discount

 1 (5,4,1) Normal case, move up

 1 (5,5,1) Normal case, move up

 1 (4,5,1) Move up off diagram, then back

 1 (4,6,1) Normal case, move up

 1 (3,5,1) Move up off diagram, then back

 111 (3,8,1) Normal, move up

 1 (2,6,1) Move off diagram and back

 111111111 (2,15,1) Normal

 1 (1,8,1) Move off diagram and back

 111..(20x) (1,48,1) Normal, move up

 1 (1,48,1) Can't go any further

 0 (2,7,0) Discount

A bit history is mapped to a prediction like a direct context
model, except that there is no count and the learning rate is
fixed at 1/4096 of the error. The initial prediction for each bit
history is (n1 + 0.5)/(n0 + n1 + 1).
The details of the design were determined experimentally to
improve compression slightly over the PAQ8 series, which
uses a similar design.
An indirect model is more memory efficient because it uses
only one byte per context instead of four. In all of the PAQ
series, it is implemented as a hash table. In the PAQ8 series,
the hash table is designed to allow lookups with at most 3
cache misses per byte. In ZPAQ, there are 2 cache misses per
byte, similar to the direct model. The ZPAQ hash table maps a
context on a 4 bit boundary to an array of 15 bit histories and
an 8-bit checksum. The histories represent all 15 possible
contexts that occur after up to 3 more bits. The steps are as
follows:

 Once per byte, a user specified context hash is computed.

 Once every 4 bits, the context hash is combined with the
first 4 bits (if any) and a hash table lookup is done.

 A hash index h and an 8 bit checksum are extracted from
the 32 bit hash.

 We look for a matching checksum at addresses h, h XOR 1
and h XOR 2 (to stay within the cache line) and return the
first match found.

 If no match is found, then the array with the smallest n0 + n1
in the current context is replaced.

In a direct context model, we don't check for hash collisions
because they have only a very small effect on compression.
The effect is larger for indirect models so we use an 8 bit
confirmation. There is still about a 1.2% chance that a collision
won't be detected but the effect on compression is very small.
The following sizes were obtained for Ï€ and the Calgary
corpus with order 0 through 5 models and a hash table size of
2

28
 (268 MB). For comparison, the best results for direct

context models are shown. Direct models 3, 4, and 5 use
context hashes with LIMIT set to 32 and the same memory
usage.
 Model Direct Indirect

 --------------- ------- --------

 pi order 0 415,566 426,343

 Calgary order 0 1,680,784 1,716,974

 Calgary order 1 1,304,204 1,289,769

 Calgary order 2 1,089,660 1,048,050

 Calgary order 3 1,017,354 964,942

 Calgary order 4 1,069,981 1,010,329

 Calgary order 5 1,232,997 1,148,677

There are many other possibilities. For example, M1, a context
mixing compressor by Christopher Mattern, uses 2 dimensional
context models taking 2 quantized bit histories as input.

4.2. Variable Order Models (DMC, PPM)
Fixed order models compress better using longer contexts up
to a point (order 3 for the Calgary corpus). Beyond that,

file:///Z:\DCE_2010-02-26\paq.html
file:///Z:\DCE_2010-02-26\zpaq.pdf

compression gets worse because many higher order contexts
are being seen for the first time and no prediction can be
made. One solution is to collect statistics for different orders at
the same time and then use the longest matching context for
which we know something. DMC does this for bit level
predictions, and PPM for byte level predictions.

4.2.1. DMC

DMC (dynamic Markov coding) was and described in a paper
by Gordon Cormack and Nigel Horspool in 1987 and
implemented in C The compressor hook by Nania Francesco
Antonio was written in 2007 and is based on this
implementation. DMC was implementd separately in ocamyd
by Frank Schwellinger in 2006.
DMC uses a table of variable length bit level contexts that map
to a pair of counts n0 and n1. It predicts the next bit with
probability n1/(n0+n1) and updates by incrementing the
corresponding count. This implements a stationary, direct
context model. There are other possibilities, of course.
Contexts are not stored or looked up in the table. Rather, each
table entry has a pair of pointers to the next entries
corresponding to appending a 0 or 1 bit to the current context.
The next context might also drop bits off the back. Normally it
is arranged so that each context starts on a byte boundary. In
DMC and HOOK, the initial table contains 64K entries
consisting of all contexts of length 8 to 15 bits that start on a
byte boundary, i.e. bytewise order 1.
In addition to updating counts, we may also add new table
entries corresponding to the input just observed. We do this by
"cloning" the next state with one that does not drop any bits off
the back. Consider the case below where the context is 1111
and we update the model with a 0 bit. Without cloning, we
would increment ny, transition to state 110, and the next
prediction would be n1/(n0+n1).

 n0 ----> 1100 n0*(1-w) ----> 1100

 ny / / /

 1111 -----> 110 1111 110 /

 (y=0) \ | \ /

 n1 ----> 1101 | n1*(1-w) ----> 1101

 | / /

 | n0*w / /

 | ny / /

 +----> 11110 /

 \ /

 n1*w --

 Before cloning After cloning 110 to 11110

The cloning procedure is to allocate a new state (labeled
11100) and copy its two output pointers from 110. The new
state will also "inherit" the same prediction by copying the two
counts. However we proportionally reduce the two original and
two new counts in proportion to the contribution from the
original input (1111) and from other states. The weight w =
ny/(n0+n1) is the fraction of counts in state 110 that came from
1111 after a 0 bit. The newly cloned state gets that fraction of
the counts and the original gets the rest. This scaling maintains
the condition that the input and output counts are equal. The
counts are implemened as fixed or floating point numbers to
allow fractional values. The transition from 1111 to 110 is
changed to point to the new state 11110.
Before cloning (which uses memory), there should be sufficient
justification to do so. The two conditions are that the cloned
state appears often enough (ny exceeds a threshold) and that
there are sufficient other transitions to the original state that
would remain after cloning (n0+n1-ny exceeds a threshold). In
the original DMC, both thresholds are 2. Normally when the
state table is full, the model is discarded and re-initialized.
Setting higher thresholds can delay this from happening.
hook v1.4 also has an LZP preprocessor to encode long,
repeated strings with the match length from the last matching
context prior to DMC encoding. It compresses calgary.tar to
851,043 bytes in 1.9 seconds with 70 MB memory on a 2.0
GHz T3200. It compresses the files individually to a total of
840,970 bytes.

4.2.2 PPM

PPM (prediction by partial match) uses a byte-wise context
model. Each context up to some maximum order is mapped to
an array of counts for the next byte that occurred in this
context. To predict the next byte, we find the longest context
seen at least once before and allocate probabilities in
proportion to those counts. The main complication is that some
of the counts might be zero but we must never assign a zero
probability to any byte value because if it did occur, it would
have an infinite code length. This is handled by assigning an
"escape" probability that the next byte will not be any of the
ones that have nonzero counts, and divide those according to
the frequency distribution of the next lower context. This is
repeated all the way down to order 0. If any of the 256 byte
values have still not been assigned a probability, then the
remaining space is divided equally (an order -1 model).
Example: Suppose the input is BANANABOAT and we are at
the point of coding the second B.

 The order 6 context BANANA has not been seen
previously.

 The order 5 context ANANA has not been seen previously.

 The order 4 context NANA has not been seen previously.

 The order 3 context ANA has been seen once before,
followed by N. The symbol we want to code is different so we
code an "escape" symbol.

 The order 2 context NA was seen once, followed by N.
Because N was already considered, we exclude it. Since
there are no other predictions, there is nothing to code.

 The order 1 context is A. This was seen twice, in both cases
followed by N which was excluded, so again there is nothing
to code.

 The order 0 context was seen 6 times with values B (once),
A (3 times) and N (twice). After excluding N we have 4
symbols with B having 1/4 of the probability and A having 3/4.
We still need an escape probability Pesc that the next symbol
will be other than B, A, or N. We then code B with probability
(1 - Pesc)/4. We would have coded A with probability 3(1 -
Pesc)/4 and any other symbol with probability pesc/253.

Estimating the escape probability can be complex. Suppose
you draw 10 marbles from an urn. There are 8 blue, 1 green,
and 1 white. What is the probability that the next marble will be
a different color not seen before?

 By method "C" (Bell, Witten, and Cleary, 1989), 3 of the 10
marbles you drew had a novel color, so the probability would
be 0.3.

 But novel colors would be expected to show up early. By
method "X" (Witten and Bell, 1991), 2 of the colors appeared
exactly once, so the probability would be 2/10 = 0.2.

 Method "X" can fail if no colors appeared exactly once
(because the escape probability would be 0). Method "XC" is
to use "X" when possible, falling back to "C" when needed.
Method XC was shown experimentally to compress better
than C.

 A secondary escape estimation (SEE) model would look at
other cases with the same or similar distribution as {8, 1, 1},
and take the fraction of those where a novel color appeared
next. This improves on XC.

Method X was shown to be optimal under certain assumptions,
including that the source is stationary. Of course, that is not
always the case. Suppose you receive the sequence
"BBBBBBBBWG" and are asked to predict whether the next
character will be novel. The answer might be different for the
sequence "WGBBBBBBBB".
Method "C" was implemented in ha, an order 5 PPMC archiver
by Harry Hirvola in 1993. Later, Charles Bloom (1998) used
SEE in PPMZ. Dmitry Shkarin (2002) refined this method in
ppmd. ppmd variant I, released as source code in 2002, is
used in several archivers such as WinZIP, freearc, 7zip, and
WinRAR. A newer variant J in 2006 gets slightly better

http://plg1.cs.uwaterloo.ca/%7Eftp/dmc/dmc.c
http://heartofcomp.altervista.org/
ftp://garbo.uwasa.fi/pc/arcers/ha098.zip
http://www.cbloom.com/papers/index.html
http://www.compression.ru/ds/

compression. The code is the basis of slower but better
compressing programs such as ppmonstr and durilca. A variant
of durilca using 13 GB memory is top ranked on the large text
benchmark.
ppmd uses a complex SEE model. It considers 3 cases:

1. binary context - in the highest order context only one value
has appeared (one or more times).
2. nm-context - two or more values have appeared, and none
of them have appeared (are masked) in a higher order
context.
3. m-context - two or more values have appeared, and one or
more have appeared (are masked) in a higher order context.

In the binary context, a 13 bit context to a direct context model
is constructed:

 7 bits for the quantized count of the one symbol that
appeared.

 2 bits for the quantized alphabet size of the next lower order
context.

 1 bit for the quantized probability of the previously coded
byte.

 1 bit to indicate whether the two high order bits of the
previous byte are 00 (to distinguish letters from other
characters in text).

 1 bit to indicate whether the two high order bits of the
predicted byte are 00.

 1 bit for the quantized number of successive bytes that
were not escaped.

In the nm-context, the program fits the frequency distribution to
a geometric approximation such that the n'th most frequent
value is proportional to r

n
. Then r is the context.

In the m-context, the SEE context is constructed from:

 The number of unmasked values with counts > 0, quantized
to 25 levels.

 2 bits based on comparison of the alphabet sizes of the
current and next higher and lower order contexts.

 1 bit to indicate the two high bits of the previous byte are
00.

 The average frequency per value, quantized to 4 levels.
ppmonstr uses an even more complex SEE context, and
additionally uses interpolation to smooth some of the quantized
contexts. It also adjusts the prediction for the most probable
byte using secondary symbol estimation (SSE). This is a direct
context model taking as input the quantized prediction and a
(very complex) context and outputting a new prediction.
Both programs use other techniques to improve compression.
They use partial update exclusion. When a character is
counted in some context, it is counted with a weight of 1/2 in
the next lower order context. Also, when computing symbol
probabilities, it performs a weighted averaging with the
predictions of the lower order context, with the weight of the
lower order context inversely proportional to the number of
different higher order contexts of which it is a suffix.
Statistics are stored in a tree which grows during modeling.
When the memory limit is reached, the tree is discarded and
rebuilt from scratch. Optionally, the tree may be partially rebuilt
before modeling resumes.
Shown below are compressed sizes of the Calgary corpus as
a tar file and separate files. Compression and decompression
times are the same. Option -o16 means use maximum order
16. -m256 says use 256 MB memory. -r1 partially rebuilds the
model after disarding it when memory is used up, which
improves compression.

Compressor Options calgary.tar 14 files Time

----------- -------------- --------- -------- -------

ppmd J -o16 -m256 -r1 754,243 740,737 2 sec

ppmonstr J -o16 -m256 -r1 674,704 668,459 8 sec

durilca 0.5 -o128 -m256 672,752 666,216 10 sec

4.3. Context Mixing

Context mixing algorithms based on the PAQ series are top
ranked on many benchmarks by size, but are very slow. These
algorithms predict one bit at a time (like DMC) except that there
are multiple models making independent predictions which are
then combined by weighed averaging. Often the result is that
the combined prediction is better than any of the individual
predictions that contribute to it.
PPM and DMC are based on the premise that the longest
context for which statistics is available is the best predictor.
This is usually true for text but not always the case. For
example, in an audio file, a predictor would be better off
ignoring the low order bits of the the samples in its context
because they are mostly noise. For image compression, the
best predictors are the neighboring pixels in two dimensions,
which do not form a contiguous context. For text, we can
improve compression using some contexts that begin on word
boundaries and merge upper and lower case letters. In data
with fixed length records such as spreadsheets, databases or
tables, the column number is a useful context, sometimes in
combination with adjacent data in two dimensions. PAQ based
compressors may have tens or hundreds of these different
models to predict the next input bit.
A fundamental question is how do we combine predictions?
Suppose you are given two predictions pa = P(y=1|A) and pb =
P(y=1|B), probabilities that the next bit y will be a 1 given
contexts A and B. Assume that A and B have occurred often
enough for the two models to make reliable guesses, but that
both contexts have never occurred together before. What is p =
P(Y=1|A,B)?
Probability theory does not answer the question. It is possible
to create sequences where p can be anything at all for any pa
and pb. For example, we could have pa=1, pb=1, p=0. But
intuitively, we should do some kind of averaging or weighted
averaging. For example, if we wish to estimate P(car accident |
dark and raining) given P(car accident | dark) and P(car
accident | raining), we would expect the effects to be additive.
In most PAQ based algorithms, there is a procedure for
evaluating the accuracy of models and adjusting the weights to
favor the best ones. Early versions used fixed weights.

4.3.1. Linear Mixing

In PAQ6 (Mahoney, 2005a), a probability is expressed as a
count of zeros and ones. Probabilities are combined by
weighted addition of the counts. Weights are adjusted in the
direction that minimizes coding cost in weight space. Let n0i
and n1i be the counts of 0 and 1 bits for the i'th model. The
combined probabilities p0 and p1 that the next bit will be a 0 or
1 respectively, are computed as follows:

S0 = Îµ + Î£i win0i = evidence for 0
S1 = Îµ + Î£i win1i = evidence for 1
S = S0 + S1 = total evidence
p0 = S0/S = probability that next bit is 0
p1 = S1/S = probability that next bit is 1

where wi is the non-negative weight of the i'th model and Îµ is
a small positive constant needed to prevent degenerate
behavior when S is near 0.
The optimal weight update can be found by taking the partial
derivative of the coding cost with respect to wi. The coding cost
of a 0 is -log p1. The coding cost of a 1 is -log p0. The result is
that after coding bit y (0 or 1), the weights are updated by
moving along the cost gradient in weight space:

wi := max[0, wi + (y - pi)(S n1i - S1 ni) / S0 S1]

Counts are discounted to favor newer data over older. A pair of
counts is represented as a bit history similar to the one
described in section 4.1.3, but with more aggressive
discounting. When a bit is observed and the count for the
opposite bit is more than 2, the excess is halved. For example
if the state is (n0, n1) = (0, 10), then successive zero bits will
result in the states (1, 6), (2, 4), (3, 3), (4, 2), (5, 2), (6, 2).

4.3.2. Logistic Mixing

PAQ7 introduced logistic mixing, which is now favored
because it gives better compression. It is more general, since
only a probability is needed as input. This allows the use of
direct context models and a more flexible arrangement of
different model types. It is used in the PAQ8, LPAQ, PAQ8HP
series and in ZPAQ.
Given a set of predictions pi that the next bit will be a 1, and a
set of weights wi, the combined prediction is:

p = squash(Î£i wi stretch(pi))

where
stretch(p) = ln(p) / ln(1-p)
squash(x) = stretch

-1
(x) = 1/(1 + e

-x
)

The probability computation is essentially a neural network
evaluation taking stretched probabilities as input. Again we find
the optimal weight update by taking the partial derivative of the
coding cost with respect to the weights. The result is that the
update for bit y (0 or 1) is simpler than back propagation (which
would minimizes RMS error instead).
wi := wi + Î» (y - p) stretch(pi)
where Î» is the learning rate, typically around 0.01, and (y - p)
is the prediction error. Unlike linear mixing, weights can be
negative.
Compression can often be improved by using a set of weights
selected by a small context, such as a bytewise order 0
context.
In PAQ and ZPAQ, squash() and stretch() are implemented
using lookup tables. In PAQ, both output 12 bit fixed point
numbers. A stretched probability has a resolution of 2

-8
 and

range of -8 to 8. Squashed probabilities are multiples of 2
-12

.
ZPAQ represents stretched probabilities as 12 bits with a
resolution of 2

-6
 and range -32 to 32. Squashed probabilities

are 15 bits as an odd multiple of 2
-16

. This representation was
found to give slightly better compression than PAQ.
ZPAQ allows different components (models and mixers) to be
connected in arbitrary ways. All components output a stretched
probability, which simplifies the mixer implementation. ZPAQ
has 3 types of mixers:

 AVG performs weighted averaging of two (stretched)
predictions with fixed, user specified weights that add to 1.

 MIX2 is like AVG except that weights are updated with the
constraint that they add to 1. The user specifies Î» and a
context to select a pair of weights.

 MIX is like MIX2 except that it takes any number of inputs
and does not constrain the weights to add to 1. A 2 input MIX
often gives better compression than a MIX2.

Mixer weights in PAQ are 16 bit signed values to facilitate
vectorized implementation using MMX/SSE2 parallel
instructions. In ZPAQ, 16 bits was found to be inadequate for
best compression. Weights were expanded to 20 bit signed
values with range -8 to 8 and precision 2

-16
.

4.3.3. Secondary Symbol Estimation (SSE)
SSE (secondary symbol estimation) is implemented in all PAQ
versions beginning with PAQ2. Like in ppmonstr, it inputs a
prediction and a context and outputs a refined prediction. The
prediction is quantized typically to 32 or 64 values on a
nonlinear scale with finer resolution near 0 and 1 and
sometimes interpolated between the two closest values. On
update, one or both values are adjusted to reduce the
prediction error, typically by about 1%. A typical place for SSE
is to adjust the output of a mixer using a low order (0 or 1)
context. SSE components may be chained in series with
contexts typically in increasing order. Or they may be in parallel
with independent contexts, and the results mixed or averaged
together. The table is initialized so that the output prediction is
equal to the input prediction for all contexts.
SSE was introduced to PAQ in PAQ2 in 2003 with 64
quantization levels and no interpolation. Later versions used 32

levels and interpolation with updates to the two nearest values
above and below. In some versions of PAQ, SSE is also known
as an APM (adaptive probability map).
ZPAQ allows a SSE to be placed anywhere in the prediction
sequence with any context. Recall that ZPAQ probabilities are
stretched by mapping to ln(p/(1-p)) as a 12 bit fixed point
number in the range -32 to +32 with resolution 1/64. The SSE
input prediction is clamped and quantized to an odd multiple of
1/2 between -15.5 and 15.5. The low 6 bits serve as an
interpolation weight. For example, if stretch(p) = 2.7, then the
two table entries are selected by below=2.5 and above=3.5,
and the interpolation weight is 0.2. Then the output prediction
is SSE[context][below]*(1-w) + SSE[context][above]*w. Upon
update with bit y, the table entry nearest the input prediction
(SSE[context][below] in this example) is updated by reducing
the prediction error (y - output) by a user specified fraction.
There are other possibilities. CCM, a context mixing
compressor by Christian Martelock, uses a 2 dimensional SSE
taking 2 quantized predictions as input.

4.3.4 Indirect SSE (ISSE)
ISSE (indirect secondary symbol estimation) is a technique
introduced in paq9a in Dec. 2007 and is a component in ZPAQ.
The idea is to use SSE as a direct prediction method rather
than to refine an existing prediction. However, SSE does not
work well with high order contexts because the large table size
uses too much memory. More generally, a large model with
lots of free parameters (each table entry is a free parameter)
will overfit the training data and have no predictive power for
future input. As a general rule, a model should not be larger
than the input it is trained on.
ISSE does not use a 2-D table. Instead it first maps a context
to a bit history as with an indirect context map. Then the 8-bit
bit history is used as a context to select the pair of weights for
a 2 input mixer taking the input prediction and a fixed constant
as its two inputs. The weights are initialized to (1.0, 0.0)
meaning that the initial output prediction is equal to the input.
PAQ9A and the default compression mode of ZPAQ both start
with an order 0 model prediction and refine it using a chain of
ISSE components in increasing order.
In ZPAQ, the weights are 20 bit signed, fixed point numbers
with range -8 to 8 and precision 2

-16
 like in a MIX. The fixed

input is 4.0 and the learning rate is fixed at Î» = 2
-8

.

4.3.5. Match Model
A match model finds the last occurrence of a high order
context and predicts whatever symbol came next. The
accuracy of the prediction depends on the length of the context
match. Longer matches generally give more confidence to the
prediction. Typically a match model of order 6-8 is mixed with
lower order context models. A match model is faster and uses
less memory than a corresponding context model but does not
model well for low orders.
Match models are used in PAQ and ZPAQ. They consist of a
rotating history buffer and a hash table mapping contexts to
pointers into the buffer. In ZPAQ, a pointer to the match is
maintained until a mismatching bit is found. The model will then
look for a new match at the start of the next byte. On each byte
boundary, the buffer is updated with the modeled byte and the
hash table is updated so that the current context hash points to
the end of the buffer. ZPAQ allows both the hash table size
and buffer size to be user specified (as powers of 2). For best
compression, the history buffer should be as large as the input
(if this is practical) and the hash table size is typically 1/4 of
this. Because each pointer is 4 bytes, both data structures use
the same amount of memory.
Match models in PAQ maintain multiple context hashes of
different orders and multiple pointers into the buffer. The
prediction is indirect by mapping the match length to a
prediction through a direct context model. ZPAQ uses a
simpler match model with just one pointer and one hash,

file:///Z:\DCE_2010-02-26\index.html%23paq9a

although it is possible to have multiple, independent match
models. The prediction for a match of L bytes (or 8L bits) is that
the next bit will be the same with probability 1 - 1/8L.
The user may specify the context length by using a rolling
hash that depends on the desired number of characters. If h is
the context hash, c is the input byte, then the update:

h = h*((2*k+1) << m) + c;

specifies an order ceil(n/m) context hash for a hash table size
of 2

n
 and any k. For example, the hash update "h=h*40+c;" (m

= 3) is an order 6 context hash for a table size of 2
18

. Only the
low 18 bits of h would be used to index the hash table of this
size, and these bits depend only on the last 6 values of c.

4.3.6 PAQ Models

The high compression ratio (and slow speed) in PAQ comes
from using many different context models for different types of
data. These are described in historical order.
Schmidhuber and Heil (1996) developed an experimental
neural network data compressor. It used a 3 layer network
trained by back propagation to predict characters from an 80
character alphabet in text. It used separate training and
prediction phases. Compressing 10 KB of text required several
days of computation on an HP 700 workstation.
Mahoney (2000) made several improvements that made
neural network compression practical.

 The neural network predictes one bit at a time instead of
one character.

 The training is online, eliminating multiple passes.

 The first layer of the neural network is replaced by a hash
function that selects one neuron per context for each of the
orders 1 through 5.

These changes make the algorithm about 10
5
 times faster,

mainly because only a few neurons (out of millions) are active
at any one time. To make the training online, it is necessary to
add a pair of counters to each weight (to count 0 and 1 bits) so
that the learning rate is initially large. The rate decreases in
inverse proportion to the smaller of the two counts.
There are 3 versions: P5, P6, and P12. P5 uses 256 KB
memory to represent 5 orders using 2

16
 input neurons (each

representing a context hash) and one output (the bit
prediction). P6 uses 2

20
 input neurons. P12 is the same size as

P6 but adds a whole word model. This context hash depends
only on alphabetic characters mapped to lower case, and is
reset after a nonalphabetic character. It improves compression
of text files.
In PAQ1 (Mahoney, 2002), it was realized that the counts
alone could be used to make predictions, so the weights were
eliminated. Predictions are combined by adding the 0 and 1
counts associated with each context. Each counter is 1 byte.
PAQ2 added SSE by Serge Osnach in May 2003. It uses 64
quantization levels without interpolation.
PAQ3 modified SSE to use 32 levels with interpolation in Sept.
2003.
PAQ3N by Serge Osnach in Oct. 2003 added sparse models:
three order-2 models that skipped 1, 2, or 3 bytes of context
between the two context bytes. This improves compression of
some binary files.
PAQ4 (Nov. 2003) uses adaptive linear weighting of models as
described in section 4.3.1. It also introduced a record model. It
identifies structures that repeat at regular intervals, as found in
spreadsheets, tables, databases, and images, and adds
contexts of adjacent bytes in two dimensions.
PAQ5 (Dec. 2003) has some minor improvements over PAQ4,
including word models for text, models for audio and images,
an improved hash table, and modeling of run lengths within
contexts. It uses two mixers with different contexts to select

their weights. The two mixer outputs are averaged together. It
uses about 186 MB of memory.
PAQ6 (Jan. 2004) adds models for x86 code (modeling
jump/call addresses) and CCITT images and more aggressive
discounting of opposing bit counts. It takes options allowing up
to 1616 MB memory. It is the basis of a number of forks and
dozens of versions. An early version won the Calgary
challenge. Many other models and optimizations were added
by Berto Destasio, Johan de Bock, David A. Scott, Fabio
Buffoni, Jason Schmidt, Alexandar Ratushnyak (PAQAR),
Przemyslaw Skibinski (PASQDA, text preprocessing), Rudi
Cilibrasi, Pavel Holoborodko, Bill Pettis, Serge Osnach, and
Jan Ondrus.
PAQAR (v1.0 to 4.0, May-July 2004) by Alexander Ratushnyak
is a PAQ6 fork which is the basis of several winning
submissions to the Calgary Challenge. The primary difference
is a greatly increased number of mixers and SSE chains.
PAQ7 (Dec. 2005) was a complete rewrite. It uses logistic
mixing rather than linear mixing, as described in section 4.3.2.
It has models for color BMP, TIFF, and JPEG images. The
BMP and TIFF models use adjacent pixels as context. JPEG is
already compressed. The model partially undoes the
compression back to the DCT (discrete cosine transform)
coefficients and uses these as context to predict the Huffman
codes.
PAQ8A (Jan. 2006) adds a E8E9 preprocessor to improve
compression of x86 (EXE and DLL) files. The preprocessor
replaces relative CALL and JMP addresses with absolute
addresses, which improves compression because an address
may appear multiple times. Many other compressors use this
technique.
PASQDA (v1.0-v4.4, Jan. 2005 to Jan. 2006) is a fork by
Przemyslaw Skibinski. It adds an external dictionary to replace
words in text files with 1 to 3 byte symbols. This technique was
used successfully in the Hutter Prize and in the top ranked
programs in the large text benchmark. PAQ8A2, PAQ8B,
PAQ8C, PAQ8D, PAQ8E, and PAQ8G (Feb. to Mar. 2006)
also use this technique, as does PAQAR 4.5 by Alexander
Ratushnyak.
PAQ8F (Feb. 2006) adds a more memory efficient context
model and a new indirect model: The byte history within a low
order context is modeled by another low order context.
PAQ8L (Mar. 2006) adds a DMC model. Its predictions are
mixed with those of other models.
As of Feb. 2010, development remains active on the PAQ8
series. There have been hundreds of versions with
improvements and additional models. The latest is
PAQ8PX_V67. Most of the improvements have been for file
types not included in the Calgary corpus such as x86, JPEG,
BMP, TIFF, and WAV.
A benchmark for the Calgary corpus is given below for
versions of PAQ from 2000 to Jan. 2010 showing major code
changes. About 150 intermediate versions with minor
improvements have been omitted. Older programs marked with
* were benchmarked on slower machines such as a 750 MHz
Duron and have been adjusted to show projected times on a
2.0 GHz T3200, assumed to be 5.21 times faster. Sizes
marked with a D use an external English dictionary that must
be present during decompression. The size shown does not
include the dictionary, so it is artificially low. However, including
it would give a size artificially high because the dictionary is not
extracted from the test data. All versions of PAQ are archivers
that compress in solid mode, exploiting similarities between
files. Decompression time is about the same as compression
time.

Compressor Calgary Seconds Memory Date Author Major changes

---------- ------- ------- ------ -------- ------ --------------------

file:///Z:\DCE_2010-02-26\paq.html

P5 992,902 6.1* 256 KB 2000 Mahoney 64K x 1 neural network

P6 841,717 7.4* 16 MB 2000 Mahoney 1M neurons

P12 831,341 7.5* 16 MB 2000

Mahoney Word context model

PAQ1 716,704 13* 48 MB 2002 Mahoney Linear mixing with fixed weights

PAQ2 702,382 18* 48 MB May 2003 Osnach SSE

PAQ3 696,616 15* 48 MB Sep 2003 Mahoney Interpolated SSE

PAQ3N 684,580 30* 80 MB Oct 2003 Osnach Sparse models

PAQ4 672,134 43* 84 MB Nov 2003 Mahoney Adaptive mixer weights, record models

PAQ5 661,811 70* 186 MB Dec 2003 Mahoney Models for text, audio, images, runs, 2 mixers

PAQ6 -6 648,892 99* 202 MB Jan 2004 Mahoney Models for PIC, x86

PAQAR 4.0 -6 604,254 408* 230 MB Jul 2004 Ratushnyak Many mixers and SSE chains

PAQ7 -5 611,684 142* 525 MB Dec 2005 Mahoney Logistic mixing, image models

PAQ8A -4 610,624 152* 115 MB Jan 2006 Mahoney E8E9 preprocessor

PASQDA 4.4 -7 D 571,011 283* 470 MB Jan 2006 Skibinski PAQ7 + external dictionary

PAQAR 4.5 -5 D 570,374 299* 191 MB Feb 2006 Ratushnyak PAQAR + external dictionary

PAQ8F -6 605,650 161* 435 MB Feb 2006 Mahoney Bytewise indirect model, memory tuning

PAQ8L -6 595,586 368 435 MB Mar 2007 Mahoney DMC model

PAQ8PX_V67 -6 598,969 469 421 MB Jan 2010 Ondrus Improved JPEG, TIFF, BMP, WAV models

Since 2007, development has contined on PAQ. In addition to
PAQ8PX, there are 3 additional forks, no longer under active
development.

 PAQ8HP by Alexander Rathusnyak, a basis for the Hutter
Prize. The series was optimized for this data and the large
text benchmark. It uses a dictionary transform based on
XWRT which replaces words from a dictionary with 1 to 3
byte codes. The dictionary for the paq8hp series is optimized
for these benchmarks, which is allowed under the rules.
There were 12 versions from Aug. 2006 through May 2007.

 LPAQ by Matt Mahoney with later versions by Alexander
Ratushnyak. This was a "lite" PAQ, faster but with less
compression. Later versions were tuned for text. It includes a
mix of contexts of different orders and a match model. There
were 24 version from July 2007 through Feb. 2009.

 PAQ9A (Dec. 2007) was an experiment in LZP
preprocessing followed by chained ISSE modeling.
Compression is similar to early versions of LPAQ. The LZP
preprocessor removes long redundant strings. It includes
sparse and text models but no match model because high
order contexts were removed.

4.3.7. ZPAQ

Of the hundreds of PAQ versions, no program can
decompress files compressed by any other version. The goal
of the proposed ZPAQ standard is to solve this problem. It
specifies a format in which a description of the compression
algorithm is stored in the compressed archive. The
specification includes a reference decoder.
The specification does not describe the compression
algorithm. However, several compression programs and
models are available on the ZPAQ page. There is a ZPAQ
program that takes a configuration file to describe the
compression algorithm, as well as other programs like ZPIPE
that use a fixed compression algorithm. All of these produce
files that can be decompressed with the reference decoder or
by any of these programs. The standard was published in Mar.
2009 by Matt Mahoney.
ZPAQ describes an archive format, although it may be used
for single file compression or memory to memory compression.
A compressed stream consists of a sequence of blocks that
are independent and can be reordered. Each block starts with
a header that describes the decompression algorithm. A block
consists of a sequence of compressed segments that must be
decompressed in sequence from the start of the block. A
segment may be a file or a part of a file. Each segment has an
optional file name, an optional comment (file size, timestamp,
etc.), and ends with an optional 20 byte SHA-1 checksum. If
the file name is omitted, then the decompresser must supply it.
An algorithm description consists of a network of components
(each making a prediction), a program that computes the
bytewise contexts for each component, and an optional
program that post-processes the output. Both programs are
written in a language called ZPAQL which is compiled or
interpreted by the decompresser. If the post-processing

program is present, then it is appended to the front of the first
uncompressed segment and compressed along with its input
data. If not, then the data is compressed directly with a one
byte header to indicate its absence.
Up to 255 components are placed in an array. Each
component in the model inputs a context hash and possibly the
predictions of earlier components, and outputs a stretched
prediction. The output of the last component is squashed and
used to arithmetic code the data one bit at a time. The
components are as follows:

 CONST - outputs a fixed prediction in the stretched range -
16 to 16 in increments of 1/16.

 CM - a direct context model (section 4.1.2). Inputs a
context and outputs a prediction, which is then updated to
reduce the prediction error. The table size (and thus the
context size) may be any power of 2. The count limit, which
controls the learning rate, ranges from 4 to 1020 in
increments of 4.

 ICM - an indirect context model (section 4.1.3). Maps a
context to a bit history, which is mapped to a prediction. The
size may be any power of 2 at least 64 bytes.

 MATCH - (section 4.3.5). Predicts the next bit from the last
matching context in the history buffer. The hash table size
and buffer size may be any power of 2.

 AVG - weighted average of any 2 predictions. The weight
ranges from 0 to 1 in increments of 1/256.

 MIX - (section 4.3.2). Adaptively averages predictions using
weights selected by a context. Specifies a context size, a
range of inputs, a learning rate in increments of 1/4096 up to
1/16, and an 8 bit mask to turn on or off bits of the current
byte in the order 0 context.

 MIX2 - (section 4.3.2). Like a MIX but with any 2 inputs,
and the weights constrained to add to 1.

 SSE - (section 4.3.3). Maps a context and a prediction to a
new prediction using a 2-D table. Specifies a context size,
input prediction, and initial and maximum counts for the
context model (0..255 and 4..1020 by 4 respectively) and a
bit mask for the order 0 context like in a MIX or MIX2.

 ISSE - (section 4.3.4). Maps a context and a prediction to a
new prediction using a bit history to select the weights for a 2
input mixer with the other input constant. Specifies a context
size and input prediction.

Contexts are computed by a ZPAQL program that is called
once per modeled byte with that byte as input. The program
places the context hashes in an array H of 32 bit unsigned
values. Each element of H is the input for one component,
beginning with H[0] for the first one. Only the low bits of the
hash are used, depending on the table size of each
component. Because each bit must be modeled, the context
hashes are combined with the previous bits of the current byte.
This is done by expanding the previous bits to a 9 bit value
(ICM or ISSE) or 8 bits (all others) and adding it to the bytewise
context.

http://dhost.info/paq8/
file:///Z:\DCE_2010-02-26\text.html%231323
http://prize.hutter1.net/
http://prize.hutter1.net/
http://prize.hutter1.net/
file:///Z:\DCE_2010-02-26\text.html
file:///Z:\DCE_2010-02-26\text.html
file:///Z:\DCE_2010-02-26\text.html
http://xwrt.sourceforge.net/
file:///Z:\DCE_2010-02-26\index.html%23lpaq
file:///Z:\DCE_2010-02-26\index.html%23paq9a
file:///Z:\DCE_2010-02-26\zpaq.pdf
file:///Z:\DCE_2010-02-26\unzpaq108.cpp
file:///Z:\DCE_2010-02-26\index.html%23zpaq
http://en.wikipedia.org/wiki/SHA_hash_functions

ZPAQL is designed for fast execution rather than ease of
programming. It resembles an assembly language instruction
set. A ZPAQL program runs on a virtual machine with the
following state, all initialized to 0 at the start of a block:

 A 16 bit program counter.

 32 bit registers A, B, C, D, R0 through R255. The
accumulator A is used for input and the results of most
computations.

 A 1 bit flag F to hold the result of comparisons.

 An array H of 32 bit values, indexed by D. The first 256
elements of H hold computed contexts.

 An array M of 8 bit values, indexed by B or C.
The sizes of H and M are specified as powers of 2 in the block
header. Most instructions are either 1 byte, or 2 bytes including
a numeric operand. The instruction set is as follows:

 Assignment, for example A=B meaning copy B into A. The
left and right operands may be A, B, C, D, *B, *C, or *D. *B
and *C mean the element of M addressed by the low bits of B
or C (depending on the size of M). *D means an element of
H. The right operand may also be a constant from 0 through
255.

 Arithmetic, for example, A+=B meaning add B to A.
Operands are as above except that the left operand is always
A. Operations are += -= *= /= %= &= |= ^= <<= >>= &~ with
their usual meanings in C/C++. Division or mod by 0 is 0. &~
means &=~

 Comparison < == > only. The left operand is A. The result
goes in F.

 Unary operations ++ (increment) -- (decrement) ! (bit
compliment) <>A (swap with A), =0 (clear). The operand may
be A, B, C, D, *B, *C, or *D, always written first as in B! to
compliment the bits of B (B = ~B or B= -B-1;). A<>A is not
valid.

 HASH meaning A = (A + *B + 512) * 773, a convenient
hashing function.

 HASHD meaning *D = (*D + A + 512) * 773.

 OUT meaning output A (used only in postprocessing).

 HALT meaning end execution.

 Conditional jumps such as JT -4 meaning jump back 4
bytes (from the next instruction) if F is true. JF means jump if
false. JMP is unconditional. The operand is -128 to 127.

 Long jump LJ with a 2 byte operand 0 through 65535 from
the start of the program.

 Access to R0 through R255 for example R=A 5 meaning
R5=A. Operations are A=R, B=R, C=R, D=R, R=A.

The post-processor (called PCOMP), if it is present, is called
once per decoded byte with that byte in the A register. At the
end of each segment, it is called once more with -1 in A. The
decompresser output is whatever is output by the OUT
instruction.
The context model (called HCOMP) is always present. It is
called once per decoded byte. It puts its result in H. OUT has
no effect. HCOMP sees as input the PCOMP code (if present)
followed by a contiguous stream of segments with no separator
symbols.
The ZPAQ program is a development environment for writing
and debugging models. It allows programs to be single stepped
or run separate from compression. It accepts control
statements IF/IFNOT-ELSE-ENDIF and DO-
WHILE/UNTIL/FOREVER and converts them to conditional
jumps. It allows passing of numeric arguments and comments
in parenthesis. If a C++ compiler is present, then ZPAQL code
is compiled by converting it to C++ and then running it.
Otherwise the code is interpreted. Compiling makes
compression and decompression 2 to 4 times faster.
The default configuration for both ZPAQ and ZPIPE is
described by the file mid.cfg below.

 (zpaq 1.07+ config file tuned for average compression.

 Uses 111 * 2^$1 MB memory, where $1 is the first

argument.)

 comp 3 3 0 0 8 (hh hm ph pm n)

 0 icm 5 (order 0...5 chain)

 1 isse 13 0

 2 isse $1+17 1

 3 isse $1+18 2

 4 isse $1+18 3

 5 isse $1+19 4

 6 match $1+22 $1+24 (order 7)

 7 mix 16 0 7 24 255 (order 1)

 hcomp

 c++ *c=a b=c a=0 (save in rotating buffer M)

 d= 1 hash *d=a (orders 1...5 for isse)

 b-- d++ hash *d=a

 b-- d++ hash *d=a

 b-- d++ hash *d=a

 b-- d++ hash *d=a

 b-- d++ hash b-- hash *d=a (order 7 for match)

 d++ a=*c a<<= 8 *d=a (order 1 for mix)

 halt

 post

 0

 end

The comment about $1 means that the model can be run with
additional memory to improve compression. For example:

 zpaq ocmid.cfg archive files...

will compress with 111 MB memory, and

 zpaq ocmid.cfg,3 archive files...

will compress with 111 * 2

3
 = 888 MB memory. Decompression

requires the same amount. The effect of ",3" is to make
substitutions like "$1+17" with 20 throughout the configuration
file. Up to 9 parameters (to $9) are allowed.
The command "oc" means optimize (compile the ZPAQL into
C++) and compress. If the "o" is dropped then no external C++
compiler is required, but compression and decompression
takes twice as long.
The configuration file is divided into 3 sections. COMP
describes the arrangement of components. HCOMP contains
ZPAQL code that computes the contexts and puts them in H.
POST 0 indicates that there is no post-processing.
COMP is followed by 5 arguments: hh, hm, ph, pm, n. hh and
hm specify the sizes of H and M in HCOMP as powers of 2 (2

3

= 8 each). ph and pm are 0 because these arrays are not used.
(Their size is actually 1). n = 8 is the number of components.
They must be numbered 0 through n-1 in the COMP section.
Except for the line numbers, each token compiles to one byte
of ZPAQL. (Thus, ZPAQ requires "A= 10" be written exactly
like this and not "A=10" or "A = 10" to indicate it is a 2 byte
instruction).
The line
 0 icm 5

describes an indirect context model with a table size of 64 * 2
5

bytes. It takes its context from the low 15 bits of H[0]. The low 7
bits index a table of 16 byte arrays, and the next 8 bits are the
checksum to detect collisions. Since this is an order 0 context,
H[0] is left at 0 and only the bitwise context (a 9 bit value) is
used. The line
 1 isse 13 0

describes an indirect SSE using 64 * 2
13

 bytes taking its input
from component number 0 and context from H[1]. The line
 2 isse $1+17 1

describes an indirect SSE using 64 * 2
$1+17

 bytes, where $1 is
the argument passed to mid.cfg. For example, if the argument
is 3, it uses 64 * 2

20
 bytes. $1 defaults to 0. It gets its input

prediction from component 1 and its context from H[2]. The line
 6 match $1+22 $1+24

specifies a match model with a hash table size of 2
22

 and
history buffer of size 2

24
 (taking 16 MB each if $1 is 0). Its

context is H[6]. The line
 7 mix 16 0 7 24 255

specifies a mixer with 2
16

 sets of weights selected by the low
16 bits of the context, taking as input predictions from the
range of components 0 through 7-1, with a learning rate of

24/4096, and no masking (AND the bitwise context with 255).
The context is H[7].
The HCOMP section computes the contexts and puts them in
H. It puts order 0 through 5 context hashes in H[0] through
H[5], an order 7 context in H[6] for the match model, and an
unhashed order 1 context in bits 8..15 of H[7] for the mixer. It
leaves bits 0..7 clear because the bitwise context will be added
to this. This is not a concern for the other contexts because
they are hashed.
HCOMP is called once after modeling each byte with the byte
in the A register. All state information except A and PC (which
is reset to the first instruction) is preserved between calls.
This program uses M as a rotating history buffer of 8 bytes (hm
= 3) with the low 3 bits of C pointing to the last byte stored. It
uses B as a working pointer to compute hashes and D as a
pointer into H to store the result. The instructions
 c++ *c=a b=c a=0

increment C, store the input byte in M[C], copy C to B, and
clear A.
 d= 1 hash *d=a

assigns 1 to D so that it points to H[1]. The hash instruction
takes input from M[B] and combines it with A (0), so A now
contains a hash of the last input byte. It is stored in H[D] = H[1]
as an order 1 context for component 1. Subsequent
instructions store order 2, 3, 4, 5, and 7 hashes in H[2] through
H[6]. Note that the space in "d= 1" is required because it is a 2
byte instruction. "a=0" doesn't require this because there is a
special 1 byte instruction for clearing a register.
 d++ a=*c a<<= 8 *d=a

computes the mixer context by putting the input byte (saved in
*C) into bits 8..15 of D[7] and leaving the other bits at 0.
Execution ends at the halt instruction.
The following is the configuration max.cfg, which gets better
compression but is slower.
 (zpaq 1.07+ config file tuned for high compression

(slow)

 Uses 245 x 2^$1 MB memory, where $1 is the first

argument.

 comp 5 9 0 0 22 (hh hm ph pm n)

 0 const 160

 1 icm 5 (orders 0-6)

 2 isse 13 1 (sizebits j)

 3 isse $1+16 2

 4 isse $1+18 3

 5 isse $1+19 4

 6 isse $1+19 5

 7 isse $1+20 6

 8 match $1+22 $1+24

 9 icm $1+17 (order 0 word)

 10 isse $1+19 9 (order 1 word)

 11 icm 13 (sparse with gaps 1-3)

 12 icm 13

 13 icm 13

 14 icm 14 (pic)

 15 mix 16 0 15 24 255 (mix orders 1 and 0)

 16 mix 8 0 16 10 255 (including last mixer)

 17 mix2 0 15 16 24 0 (order -1)

 18 sse 8 17 32 255 (order 0)

 19 mix2 8 17 18 16 255 (order 0)

 20 sse 16 19 32 255 (order 1)

 21 mix2 0 19 20 16 0 (order -1)

 hcomp

 c++ *c=a b=c a=0 (save in rotating buffer)

 d= 2 hash *d=a b-- (orders 1,2,3,4,5,7)

 d++ hash *d=a b--

 d++ hash *d=a b--

 d++ hash *d=a b--

 d++ hash *d=a b--

 d++ hash b-- hash *d=a b--

 d++ hash *d=a b-- (match, order 8)

 d++ a=*c a&~ 32 (case insensitive words)

 a> 64 if

 a< 91 if (if a-z)

 d++ hashd d-- (update order 1 word hash)

 *d<>a a+=*d a*= 20 *d=a (order 0 word hash)

 jmp 9

 endif

 endif

 (else not a letter)

 a=*d a== 0 ifnot (move word order 0 to 1)

 d++ *d=a d--

 endif

 *d=0 (clear order 0 word hash)

 (end else)

 d++

 d++ b=c b-- a=0 hash *d=a (sparse 2)

 d++ b-- a=0 hash *d=a (sparse 3)

 d++ b-- a=0 hash *d=a (sparse 4)

 d++ a=b a-= 212 b=a a=0 hash

 *d=a b<>a a-= 216 b<>a a=*b a&= 60 hashd (pic)

 d++ a=*c a<<= 9 *d=a (mix)

 d++

 d++

 d++ d++

 d++ *d=a (sse)

 halt

 post

 0

 end

The COMP section begins with an ISSE chain of orders 0
through 6 like mid.cfg (with one extra ISSE). "const 160"
provides a bias for the mixers that follow later. It outputs a fixed
prediction of (160-128)/16 = 2 (stretched). The match model is
order 8. As with mid.cfg, M is used as a rotating history buffer,
but with a size of 2

hm
 = 2

9
 = 512. H is 2

hh
 = 32 elements. There

are n = 22 components.
Components 9 and 10 are an ISSE chain of word-oriented
order 0 and 1 contexts for modeling text. These form a
separate chain. Generally, the best compression is obtained
when each ISSE context contains the lower order context of its
input. Otherwise the models should be independent and mixed
later. The context is formed by mapping upper and lower case
letters together and discarding all other input. The order 0
context is a hash of all of the letters since the beginning of the
word or 0 if the last byte was not a letter. The order 1 hash
combines this with the previous word.
Components 11 through 13 are sparse order 1 contexts with a
gap of 1 to 3 bytes between the context and the current byte.
These are useful for modeling binary files.
Component 14 is a model for CCITT binary fax images (PIC in
the Calgary corpus). The image width is 1728 pixels or 216
bytes, mapped one bit per pixel in MSB to LSB order (0=white,
1=black). The context is the 8 bits from the previous scan line
and 2 additional bits from the second to last scan line.
Components 15 and 16 are order 1 and 0 mixers taking all
earlier components as inputs. The second (order 0) mixer has
a slower learning rate because it has fewer free parameters.
Those two mixer outputs are mixed by the context free (size 0)
MIX2 at 17. Its output is refined by the order 0 SSE at 18. The
input and output of the SSE are mixed at 19. That prediction is
refined by the order 1 SSE at 20. Finally the input and output of
that SSE are mixed by the context free MIX2 at 21.
The code for computing the order 0 and 1 word contexts in
H[9..10] starts at
 d++ a=*c a&~ 32 (lowercase words)

This increments D to point to H[9] (the order 0 word model),
retrieves the input byte saved in M[C], and clears bit 5
(meaning a &= ~32) which converts lower case to upper case.
Then
 a> 64 if

 a< 91 if (if a-z)

tests if A is in the range A..Z (ASCII 65..90). The "if" is
converted to a conditional jump to the matching "else" or
"endif". If the test passes then the two word hashes are
updated. The instruction *d<>a means swap H[D] with A. The
hash in D[9] is a rolling hash but in D[10] is cumulative. JMP 9
skips 9 bytes past the commented "else" clause. If the input is
not a letter then H[9] is moved to H[10] and H[9] is cleared.
The following results are for the Calgary corpus as a solid
archive when supported. Compression is timed in seconds on
a 2 GHz T3200.

 Program Size Time Memory (MB)

 ------- --------- ---- ------

 zip -9 1,020,831 0.6 0.5

 ppmd 804,992 0.6 7.5 (calgary.tar)

 ppmd -m256 -o16 754,243 1.3 62 (calgary.tar)

 ppmonstr 669,497 8 51 (calgary.tar)

 lpaq1 6 682,512 8 195 (calgary.tar)

 lpaq9m 6 686,161 8 198 (calgary.tar)

 paq9a -6 676,914 12 209

 zpaq ocmid.cfg 699,474 8 111

 zpaq ocmax.cfg 644,433 20 246

 zpaq ocmax.cfg,1 644,320 20 477

 paq8l -6 595,474 368 435

 paq8px_v67 -6 598,969 469 421

5. Transforms
A transform converts data into a sequence of symbols which
can be compressed with a simpler or faster model, or one
using less memory, such as an order 0 context model. Those
symbols still need to be modeled and coded as described in
sections 4 and 3 respectively.
A transform should ideally be a bijection. For each input, there
should be exactly one possible representation. More often, the
transform is an injection, and its inverse a surjection. An input
may have more than one valid representation, either of which
is transformed back to the original data during decompression.
This increases the information content of the transformed data
because the arbitrary choice of representation has to be
modeled and coded, taking up space.

5.1. Run Length Encoding
A run length code replaces a long repeating sequence of
identical symbols with two symbols representing a count and
the value to be repeated. For example, the string "AAAAA"
would be coded as (5,"A").

5.2. LZ77 and Deduplication
In LZ77 compression, duplicate strings in the input are
replaced by pointers to previous occurrences. LZ77 is not a
bijection. For example, given the string:
 AB..BC..ABC

"ABC" could be coded as:

 a pointer to AB, and literal C,

 a literal A and pointer to BC,

 or 3 literals, A, B, C.
A pointer consists of an offset and a length. It is allowed for the
copied string to overlap the output. For example "AAAAA"
could be coded as a A,(-1,4) meaning write a literal "A" and
then go back 1 and copy the next 4 bytes. Thus, LZ77 may
also encode run lengths.
LZ77 decompression is extremely fast, faster than
compression. The compressor must search for matching
strings, typically using a hash table or tree. The decompresser
only needs to maintain an output buffer from which to copy
repeated strings, and then write a copy of its output to the
buffer.
The name "LZ77" comes from Lempel and Ziv, who described
it in a 1977 paper (Ziv and Lempel, 1977).

5.2.1 LZSS

LZSS (Lempel-Ziv-Storer-Szymanski, 1982) uses 1 bit flags to
mark whether the next symbol is a literal or a pointer. LZSS is
used in NTFS file compression in Windows when the folder
property is set to store files compressed. Its primary goal is to
be extremely fast (faster than disk access) rather than provide
good compression. The exact format was not published.
Rather, it was reverse engineered (in Russian) in 1998. 16
literal/pointer flags are packed into 2 bytes. This is followed by
16 symbols which are either 1 byte literals or 2 byte pointers.
The offset is variable length with a maximum of 12 bits. Any
remaining bits are allocated to the length, which has a
minimum value of 3. Thus, after 2K of input, each pointer is a
12 bit offset and a 4 bit length ranging from 3 to 18.
Windows indicates that a compressed folder containing the
Calgary corpus occupies 1,916,928 bytes. On the large text
benchmark, the 1 GB text file enwik9 compresses to 636 MB,
slightly larger than an order 0 coder and about twice the size of

zip. Copying enwik9 between 2 uncompressed folders takes 41
seconds on the test machine (a laptop with a 2.0 GHz T3200).
Copying from a compressed folder to an uncompressed folder
takes 35 seconds, i.e. decompression is faster than copying.
Copying from an uncompressed folder to a compressed folder
takes 51 seconds. This is equivalent to compressing the
Calgary corpus in 0.03 seconds over the time to copy it.
The NTFS implementation of LZSS is very similar to lzrw1-a
implemented by Ross Williams in 1991. lzrw1-a uses a fixed 12
bit offset and 4 bit length.

5.2.2. Deflate

The widely popular deflate format is used in zip and gzip and is
supported by many other archivers. It is used internally in PNG
images, PDF documents, and Java JAR archives. The format
is documented in RFC 1951 (1996) and supported by the open
source zlib library.
In the deflate format, pointer offsets range from 1 to 32768 and
length from 3 to 258. Literals and lengths are coded in a 286
symbol alphabet which is Huffman coded followed by up to 5
extra uncompressed bits of the length. A length code is
followed by an offset from a 30 symbol Huffman coded
alphabet followed by up to 13 extra uncompressed bits.
Specifically the alphabets are as follows:

 0..255 = literal byte

 256 = end of data

 257..264 = lengths 3..10

 265..268 = lengths 11..18 followed by 1 extra bit

 269..272 = lengths 19..34, 2 extra bits

 273..276 = lengths 35..66, 3 extra bits

 277..280 = lengths 67..130, 4 extra bits

 281..284 = lengths 131..257, 5 extra bits

 285 = length 258

Lengths are followed by an offset coded from a 30 symbol
alphabet:

 0..3 = offset 1..4

 4..5 = offset 5..8 followed by 1 extra bit

 6..7 = offset 9..16, 2 extra bits

 8..9 = offset 17..32, 3 extra bits

 ...

 28..29 = offset 16385..32768, 13 extra bits

The format allows either a default or a custom Huffman code.
The default code lengths are as follows:

 Literal/length

 0..143 = 8 bits

 144..255 = 9 bits

 256..279 = 7 bits

 280..287 = 8 bits

 Offset

 0..29 = 5 bits

If a custom Huffman table is used, then the table is transmitted
as a sequence of code lengths. That sequence is itself
compressed by run length encoding using another Huffman
code to encode the literals and run lengths. It uses a 19 symbol
alphabet:

 0..15 = code lengths of 0..15

 16 = copy the previous code 3..6 times, followed by 2

extra bits

 17 = copy 3..10 times, 3 extra bits

 18 = copy 11..138 times, 7 extra bits

The Huffman table for these codes are sent as a sequence of
up to 19 3-bit numbers. This sequence is further compressed
by reordering the sequence so that the values most likely to be
0 (not used) are at the end, and sending the sequence only up
to the last nonzero value. A 4 bit number indicates the
sequence length. The order is: 16, 17, 18, 0, 8, 7, 9, 6, 10, 5,
11, 4, 12, 3, 13, 2, 14, 1, 15. All Huffman codes are packed in
LSB to MSB order.

http://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/LZ77_and_LZ78
http://en.wikipedia.org/wiki/Lempel-Ziv-Storer-Szymanski
http://en.wikipedia.org/wiki/NTFS#File_compression
http://www.nf-team.org/drmad/zf/zf5/zf5_025.htm
http://www.ross.net/compression/lzrw1a.html
http://en.wikipedia.org/wiki/DEFLATE
http://tools.ietf.org/html/rfc1951
http://www.zlib.net/

zip and gzip take an option -1 through -9 to select compression
level at the expense of speed. All options produce compressed
data in deflate format which decompresses at the same speed
(much faster than compression) with the same algorithm. The
difference is that with the higher options, the compressor
spends more time looking for encodings that compress better.
A typical implementation will keep a list of 3 byte matches (the
shortest allowed) in a hash table and test the following data to
find the longest match. With a higher option, the compressor
will spend more time searching. It is also sometimes possible
to improve compression by encoding a literal even if a match is
found, if it results in a longer match starting at the next byte.
Such testing also increases compression time. kzip performs
an extreme level of optimizations like this. Compressed sizes
and compression times on a 2.0 GHz T3200 are shown below
for the 14 file Calgary corpus.

 Program Size Time

 ------ --------- ----

 zip -1 1,194,720 .17 sec.

 zip -2 1,151,711 .23

 zip -3 1,115,078 .25

 zip -4 1,072,909 .25

 zip -5 1,041,083 .33

 zip -6 1,028,171 .40 (default)

 zip -7 1,025,244 .42

 zip -8 1,021,607 .50

 zip -9 1,020,831 .67

 kzip 978,707 24.21

 unzip .10

5.2.3. LZMA

LZMA (Lempel Ziv Markov Arithmetic) is the native
compression mode of 7-zip. Compression is improved by using
a longer history buffer (selectable up to 4 GB) which allows
more matches to be found. Symbols are arithmetic coded using
a context model.

5.2.4. LZX

LZX is an LZ77 variant used in Microsoft CAB files and
compressed help (CHM) files. It uses a history buffer of up to 2
MB and Huffman coding. To improve compression, it uses
shorter codes to code the 3 most recent matches.

5.2.5, ROLZ and LZP

The idea of using shorter codes for recent matches can be
extended. The compressor for lzrw3 builds a dictionary (a hash
table) of pointers into the history buffer as usual to find
matching strings, but instead of coding the offset, it codes the
index into the table. The decompresser builds an identical hash
table from the data it has already decompressed, then uses the
index to find the match. The length is coded as usual.
ROLZ (reduced offset LZ) extends this idea further by
replacing the large hash table with many smaller hash tables
selected by a low order context. This reduces the size of the
offset, although it can sometimes cause the best match to be
missed. ROLZ was implemented in WinRK.
The extreme case of ROLZ is to use one element per hash
table. In this case, only a literal or length must be coded. This
algorithm is called LZP. It was first described by Charles Bloom
in 1995. LZP works best with a high order context. Thus, it is
often used as a preprocessor to a low or moderate order
context model, rather than a fast order 0 model like LZ77.

5.2.6. Deduplication

Deduplication is the application of LZ77 to a file system rather
than a data stream. The idea is to find duplicate files or files
containing large blocks of data duplicated elsewhere, and
replace them with pointers.

5.3. LZW and Dictionary Encoding
Dictionary methods substitute codes for common strings from
a table or dictionary. A dictionary code may be, fixed, static or
dynamic. In the fixed case, the dictionary is specified as part of

the algorithm. In the static case, the compressor analyzes the
input, constructs a dictionary, and transmits it to the
decompresser. In the dynamic case, both the compressor and
decompresser construct identical dictionaries from past data
using identical algorithms.

5.3.1. LZW

LZW (Lempel-Ziv-Welch) is a dynamic dictionary method. It is
used by the UNIX compress program, GIF images, and is one
of the compressed modes in TIFF images. The algorithm was
patented by both Sperry (later Unisys) in 1981 and by IBM and
1983 when the USPTO did not realize that they were the same
algorithm. Unisys was criticized for waiting until GIF became an
established standard before demanding royalties from makers
of software that could read or write GIF images. Both patents
are now expired.
LZW starts with a dictionary of 256 1-byte symbols. It parses
the input into the longest possible strings that match a
dictionary entry, then replaces the string with its index. After
each encoding, that string plus the byte that follows it is added
to the dictionary. For example, if the input is ABCABCABCABC
then the encoding is as follows:

 65 = A (add AB to dictionary as code 256)

 66 = B (add BC as 257)

 67 = C (add CA as 258)

 256 = AB (add ABC as 259)

 258 = CA (add CAB as 260)

 257 = BC (add BCA 261)

 259 = ABC (end of input)

Dictionary codes grow in length as it becomes larger. When
the size is 257 to 512, each code has 9 bits. When it is 513 to
1024, each code is 10 bits, and so on. When the dictionary is
full (64K = 16 bits), it is discarded and re-initialized.
A Windows version of the UNIX compress program
compresses the Calgary corpus to 14 files totaling 1,272,722
bytes in 0.34 seconds and decompresses in 0.23 seconds.
Other variants of LZW may use larger dictionaries, or may use
other replacement strategies like LRU (least recently used), or
other strategies for adding new symbols such as concatenating
the last two coded symbols instead of a symbol plus the next
byte.

5.3.2. Dictionary Encoding

Dictionary encoding improves the compression of text files by
replacing whole words with symbols ranging from 1 to 3 bytes.
Fixed English dictionaries are used in WinRK, durilca, and in
some versions of PAQ such as PAsQDacc 4.3c -7, which
compresses the Calgary corpus to 567,668 using a dictionary
extracted from the corpus itself, but not included in the
compressed size. It is, of course, possible to compress to
arbitrarily small sizes using this technique. The extreme case is
barf. It has a built in 14 word dictionary, one for each file of the
Calgary corpus. When the compressor detects a match, it
"compresses" the file to 1 byte, which the decompresser
correctly expands.
For this reason, the large text benchmark and contests like the
Calgary challenge and Hutter prize include the size of the
decompression program and all other files needed to
decompress. Still, it may be useful to use a dictionary for one
or more languages if the input is expected to contain text in
those languages.
Of more interest are static dictionaries. These are used by the
top 3 programs on the large text benchmark (as of Feb. 2010),
and in all of the Hutter prize winners. Some of the later Calgary
challenge winners also use small dictionaries.

5.3.2.1. Modeling Text

Recall from section 1.4 that text compression is an AI problem.
This can be seen by playing Shannon's character guessing
game which he used to estimate that the entropy of written
English is about 1 bpc (Shannon, 1950). Try partially covering

http://advsys.net/ken/utils.htm
http://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
http://www.7-zip.org/
http://en.wikipedia.org/wiki/LZX_%28algorithm%29
http://support.microsoft.com/default.aspx?scid=KB;en-us;310618
http://www.ross.net/compression/lzrw3.html
http://en.wikipedia.org/wiki/Reduced_Offset_Lempel_Ziv
http://www.cbloom.com/src/index_lz.html
http://en.wikipedia.org/wiki/LZW
http://en.wikipedia.org/wiki/Compress
http://en.wikipedia.org/wiki/Graphics_Interchange_Format
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
file:///Z:\DCE_2010-02-26\barf.html
file:///Z:\DCE_2010-02-26\text.html
http://www.mailcom.com/challenge/
http://prize.hutter1.net/

some text with your hand and guessing what letters come next
from the earlier context, for example: "the cat caught a mo___".
Humans can beat computers at the game because the
prediction problem requires vast understanding of English and
of the world. Nevertheless, some of the constraints of natural
language can be modeled. These rules are categorized as
follows:

 lexical: "moqse" is wrong because it is not a word.

 semantic: "moose" is wrong because it is not associated
with things that a cat would chase.

 syntactic or grammatical: "moves" is wrong because we
expect "a" to be followed by a singular noun phrase.

While playing the game, you will notice that useful contexts
start on word boundaries. Thus, "a mo_" and "caught a mo_"
are useful contexts, but "ght a mo_" is no more useful than the
lower order "a mo_". Thus, text models in PAQ construct
contexts that start on word boundaries.
It should be irrelevant if a context spans a line break. Thus,
word contexts in PAQ discard the characters between words.
Furthermore, it should be irrelevant if the context is upper or
lower case, because it does not change the meaning. Thus,
there are word models that ignore case.
Semantics can be modeled by associating each pair of words
like (cat, mouse) with a co-occurrence frequency over a small
window. Words that frequenly occur near each other tend to
have related meanings. This can be modeled with a sparse
order-1 word model, skipping one or more words in between
the context and the predicted word. Many PAQ versions have
sparse word models with small gaps of 1 to 3 words.
For modeling semantics, it is useful to split text into
"meaningful" units or morphemes if possible. For example,
"moves" really has two independent parts, the stem "move"
and suffix "s". Ideally these should be modeled as separate
words.
Grammar constrains text to make certain sequences more
likely, such as (the NOUN) or (a ADJ NOUN). It is possible to
learn the parts of speech by observing when words occur in
similar contexts and grouping them. For example "the dog",
"the cat", and "a dog" could be used to predict the unseen
sequence "a cat". This works by grouping "the" and "a" into
one semantic category and "dog" and "cat" into another
category.
A dictionary transform works by replacing the input text with a
sequence of highly predictive symbols corresponding to
morphemes, independent of capitalization and punctuation.
This improves compression both by allowing simpler models to
be used, and by reducing the size of the input, which improves
speed and reduces pressure on memory. Compression can be
improved further by grouping semantically or grammatically
related words so that the compressor can merge them into
single contexts by ignoring the low bits of dictionary codes.
Care should be taken not to remove useful context, which can
happen if a dictionary is too large or divides words in the wrong
places. For example, coding "move" and "remove" as unrelated
symbols would not help compression.
5.3.2.2. Capitalization Modeling

A capitalization model replaces upper case letters with a
special symbol followed by a lower case letter. For example,
"The" could be coded as "Athe" where "A" directs the
decompresser to capitalize the next letter. Alternatively, a more
sophisticated model might automatically capitalize the first
letter after a period, and insert a special symbol to encode
exceptions.
5.3.2.3. Newline Modeling

Because newlines are semantically equivalent to spaces, it is
sometimes useful to replace then with spaces, and encode in a
separate stream the information to put them back. A simple
transform is space stuffing, where a space is inserted after
every newline. For example, this has the effect of merging the
order 4 contexts " the" and "\nthe" (where \n is a linefeed) by
replacing the latter with "\n the". Space stuffing does not help

with multi-word contexts that span lines. However the
alternative is to remove context that could predict newlines,
such as periods at the end of a paragraph.
5.3.2.4. Word Encoding

Word encoding is done in two passes. In the first pass, the text
is parsed into words (sequences of A-Z, a-z, and possibly UTF-
8 characters in non-English alphabets) and counted. Words
with counts below a threshold are discarded. In the second
pass, words found in the dictionary are replaced with 1 or 2
byte codes (or 3 bytes for large dictionaries). The dictionary is
listed at the beginning of the output, followed by the encoded
data. Words not found in the dictionary and non-letters are
passed unchanged.
Words are typically encoded with bytes from the part of the
ASCII set that does not normally appear in text, namely 0..8,
11..12, 14..31, and 127..255. If capitalization modeling was
done, then 65..90 (A-Z) may also be used. If such bytes do
appear, they must be preceded by an escape byte, designated
as one of the above. The remainder of the alphabet may be
used to encode words.
XWRT (XML Word Reducing Transform) by Przemyslaw
Skibinski in Oct. 2007 performs dictionary encoding. The
dictionary is appended as a header to the output with one word
per line in decreasing order of frequency. The most frequent
words are encoded with one byte.
5.3.2.5. Results

The following table shows the effect of simple capitalization
modeling (using "A" followed by lowercase), space stuffing,
and word encoding using XWRT on book1 from the Calgary
corpus on 4 compressors. The -f option selects the minimum
word frequency for inclusion in the dictionary. The number in
parenthesis shows the dictionary size that results. (The exact
options are -o -l0 -c -s -n -w -m256 for xwrt 3.2 to turn off other
transform options. There is no space or capitalization
modeling).

 book1 zip -9 sr2 bzip2 -9

ppmonstr

 ------- ------- ------- ------- ---

 No transform 768,771 312,502 276,364 232,598

203,247

 Capitalization 785,101 311,696 275,124 231,594

202,650

 Space stuffing 785,393 313,640 275,161 229,988

202,274

 Both 801,723 312,856 273,864 229,861

201,706

 xwrt -f3 (4307) 366,323 265,721 246,897 233,928

211,382

 xwrt -f6 (2806) 378,289 267,522 246,760 231,675

208,801

 xwrt -f20 (789) 449,233 278,639 254,227 230,243

204,897

 xwrt -f100 (174) 542,670 290,268 262,575 228,904

202,832

The table shows that space stuffing and capitalization usually
help, but that word encoding becomes less effective as the
compression improves. It is nevertheless useful for
compressing the large text benchmark where memory
constraints are severe because it reduces the size of the input.
The top 3 programs use it. Capitalization modeling is also
useful, but space stuffing is not because line breaks are only
used to separate paragraphs.
XWRT is ranked sixth (as of Feb. 2010) on the large text
benchmark when used with its built in LPAQ6 compressor. The
optimal setting in this case is -f200 to select a dictionary size of
about 40,000 words. It does slightly better (ranking fifth) as a
preprocessor to ppmonstr with option -f64.
paq8hp12 and drt|lpaq9m, both by Alexander Ratushnyak, are
ranked second and third on the large text benchmark and are
the basis of winning entries for the Hutter prize. These both
use a custom dictionary of about 44,000 words. The higher
frequency words are grouped semantically, such as "son" with

http://en.wikipedia.org/wiki/Morpheme
http://xwrt.sourceforge.net/

"daughter" and "monday" with "tuesday". Among the lower
frequency words, they are grouped by common suffix
(alphabetical order when reversed) to make the dictionary
compress smaller.
durilca_kingsize is the top ranked program on the large text
benchmark, but only because it uses 13 GB of memory, vs. 2
GB. It uses a dictionary of about 124,000 words. These are
also grouped semantically, but by an automated process that
clustered words in context space. The algorithm was not
documented, but the idea is roughly to group words together if
they are likely to appear in the same context.

5.4. Symbol Ranking

Symbol ranking, or move-to-front (MTF), is a transform in
which the alphabet is maintained in a queue from newest to
oldest and coded by its position. The idea is that the most
recently seen symbol is the most likely to occur in the future.
srank is a symbol ranking compressor by Peter Fenwick in
1996. An order 3 context hash without collision detection is
mapped to a queue of length 3 representing the 3 most
frequently seen bytes in that context. These are Huffman
coded with 1, 3, or 4 bits respectively. Long runs of first place
bytes are run length encoded with 12 bits to encode the run
length. Bytes not seen in the queue are modeled in an order 0
pseudo-MTF queue using 7 bits for the first 32 positions and 12
bits for the other 224. It is called "pseudo-MTF" because when
a byte is observed, it is moved only about half way to the front
with some random dithering. This is an optimization for speed.
It allows a fast update of an index into the queue. The order 3
hash table maximum size is 2

18
 queues (1 MB memory).

sr2 is an improved (but slower) symbol ranking compressor by
Matt Mahoney in Aug. 2007. An order 4 context hash is
mapped to a table of 2

20
 3 byte MTF queues and a counter for

consecutive first place hits ranging from 0 to 63. When the first
place byte is observed, the counter is incremented. For all
other values, the counter is reset to 1 if in the queue or 0 if not.
The new value is pushed to the front of the queue and the
others pushed back. For example, the sequence ABCCC
would result in the queue (C,B,A,3) with C at the front. A
subsequent B would result in (B,C,A,1). A subsequent D would
result in (D,B,C,0).
A byte is first Huffman coded and then arithmetic coded. The
point of the Huffman code is to reduce the number of arithmetic
coding operations for better speed. Suppose the queue
contains (c1,c2,c3,n). The coding and next state is as follows:

 Input Code (c1 c2 c3 n) next state

 ----- ---- --------------------------

 Initial (0, 0, 0, 0)

 c1 0 (c1, c2, c3, min(n+1, 63))

 c2 110 (c2, c1, c3, 1)

 c3 111 (c3, c1, c2, 1)

 other c 10cccccccc (c, c1, c2, 0)

The bits are coded using a direct context model with a count
ranging from 2 to 128 (section 4.1.2). For n â‰¥ 4, the context
is order 1 plus n plus the previous bits of the current symbol.
For n < 4, the model is the same except order 2.
The following comparison is for the Calgary corpus as 14 files
compressed separately.

Program Size Compr Decompression

--------- --------- ---- --------

srank -C8 1,281,984 0.20 0.20 sec.

sr2 975,208 0.48 0.50 sec.

During development, it was observed that an order 3 context
sometimes compressed better on smaller files, but order 4
works better on larger files. Increasing the hash table beyond
2

20
 did not help much, in spite of the fact that more memory

almost always helps any algorithm.
Arithmetic decoding is slightly slower than encoding. Recall
that the steps to compress are:

1. predict next bit
2. code the bit
3. update the model

For decompression:
1. predict next bit
2. decode the bit
3. update the model

Modern processes can reorder instructions and execute them
in parallel. During compression, steps 2 and 3 are
independent, so they can overlap. During decompression, the
model cannot be updated until the bit has finished being
decoded.

5.5. Context Sorting (BWT)
A Burrows-Wheeler Transform sorts the input by its right
context. By bringing together characters with similar contexts,
the transformed data can be more easily compressed with a
fast adapting order 0 model. Shown below is a portion of the
Burrows Wheeler transform of book1 from the Calgary corpus
(with newlines converted to spaces for clarity). The column in
bold is the BWT.

BWT block --+ +--- Sorted on this column

 \ /

 VV

 ing. Her culpability lay in her m

 e of the instability of a woman ?

 hat the desirability of her exist

 tion, from inability to guide inc

 husband's inability to meet the

 nervous excitability, he returned

 stimony, probability, induction -

 le of respectability, were now si

 of a ship's cabin, with wood slid

 new riding-habit -- the most ele

 mostly her habit hen excited, he

 's virtuous habit of entering the

 new riding-habit of myrtle-green

 aracter and habit, and seemed so

 e no riding-habit, looked around

 besides the habitable inn itself,

 ceived no inhabitant for the spac

 ' by the inhabitants of Caster+

 ttle <P 61> habitation, and here

 every human habitation, and the h

 those old-inhabited walls. It was

 ntly to old habits and usages, si

 o imply his habitual reception of

 rgrass, who habitually spoke on a

 at everybody abjured her -- for w

 osed all the able-bodied men upon

 en the favourable-con+ junction s

 ame to the stable-door and looked

 d been answerable .! ' " We must

The BWT is the column in bold. It is

"...ptrnntbtchhhhhhhhhhhhhhh rtr...".
BWT is best suited for stationary sources. For example, a
sorted list of words would be compressed poorly because local
rules (newline is followed by "A", later changing to "B") become
spread throughout the transform. For these cases, separating
different data types into independently compressed blocks can
improve compression. Otherwise, the largest possible block
size should be used.
BWT compression depends on the alphabet order. Best
compression is obtained when related symbols such as letters
or digits that make similar predictions are grouped together.
The ASCII character set already has this property, but is not
optimal.

5.5.1. Forward transform

Compressors that use BWT are called context sorting or block
sorting algorithms. A typical implementation is to divide the
input into fixed sized blocks (as large as memory allows) and
sort an array (of the same size) of pointers into the block. The
sort order is the lexicographical order of the string to which it
points, wrapping around to the beginning of the block if

http://www.cs.auckland.ac.nz/%7Epeter-f/
file:///Z:\DCE_2010-02-26\index.html%23sr2
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform

necessary. If each pointer is 4 bytes, then memory usage is 5
times the block size.
Typically a fast sorting algorithm is used, such as a radix sort.
Sorting speed depends on the average number of bytes that
must be tested in a string comparison. If the input is highly
redundant, then sorting will be slow. The worst case is O(n

2
)

for a radix sort. This problem can be avoided by preprocessing
the input to remove high order statistics in the form of copies of
long strings, such as with a high order LZP or LZ77. This can
also make compression faster by making the block smaller.
Another approach is to randomly flip a small fraction of the
input bits and flip them back during decompression.
A third approach is to use a Schindler transform, a variation in
which the sort order is based on a truncated string comparison.
However, this method is protected by patent 6,199,064 in the
U.S. The patent expires Nov. 14, 2017.
It is sometimes convenient to add a virtual "end of block"
symbol with the value -1 before context sorting. This makes it
unnecessary to wrap around to the beginning of the block to
compare strings.

5.5.2. Inverse transform

It is rather surprising that a BWT block can be inverted to
recover the original data. The only other information needed is
the new position of the original first byte. We are given a BWT
string BWT[0..n-1] of length n, and the location p (0 â‰¤ p < n)
of the position of the first byte BWT[p]. The algorithm to output
the original string is:
 T = sort(BWT)

 Repeat n times:

 output BWT[p]

 move p from the i'th location of c in T to the i'th

location of c in BWT

For example, suppose that BWT[0..5] = "NNBAAA" is the BWT
of "BANANA". as shown:
BWT Sorted context

 \/

 NABANA

 NANABA

 BANANA p=2

 ABANAN

 ANABAN

 ANANAB

Create T[0..5] = "AAABNN". We now have:
 p

 0 1 2 3 4 5

 BWT = N N B A A A

 T = A A A B N N

The steps are:
 output BWT[2] = B

 p is the third A in T. Move to p=5, the third A in BWT.

 output BWT[5] = A

 p is the second N in T. Move to p=1, the second N in

BWT.

 output BWT[1] = N

 p is the second A in T. Move to p=4, the second A in

BWT.

 output BWT[4] = A

 p is the first N in T. Move to p=0, the first N in BWT.

 output BWT[0] = N

 p is the first A in T. Move to p=3, the first A in BWT.

 output BWT[3] = A.

As an optimization, we may represented the sorted array T
solely by the starting position of each of the 256 sequences of
byte values, for example A=0, B=3, C=3,..., N=4, O=6.
Furthermore, we can construct in advance a list NEXT[0..n-1]
such that NEXT[p] is the next move for p. For example,
NEXT[2] = 5 would be the first move. To build this list we scan
BWT and use T to count the occurrence of each byte value.

 for i in 0..n-1 do

 NEXT[T[BWT[i]]++] = i

In C++, the inverse BWT looks like this:

 // Invert and output the BWT in bwt[0...n-1] starting at

p

 void invert_BWT(unsigned char *bwt, int n, int p) {

 // Collect cumulative counts of bwt:

 // t[i] = number of bytes < i

 int t[257]={0}; // cumulative counts

 for (int i=0; i<n; ++i)

 ++t[bwt[i]+1];

 for (int i=1; i<257; ++i)

 t[i]+=t[i-1];

 assert(t[256]==n);

 // Build linked list

 int *next=calloc(n, sizeof(int)); // linked list

 assert(next); // out of memory?

 for (int i=0; i<n; ++i)

 next[t[bwt[i]]++]=i;

 assert(t[255]==n);

 // Traverse and output list

 for (int i=0; i<n; ++i) {

 assert(p>=0 && p<n);

 putc(bwt[p], out);

 p=next[p];

 }

 free(next);

 }

5.5.3. bzip2

bzip2 is a popular open source BWT based file compressor
developed in 1996 by Julian Seward. It takes an option -1
through -9 to select a block size of 100 KB to 900 KB. -9
generally gives the best compression. The compression
algorithm is as follows:

1. The input is run length encoded to remove some (not all)
high order redundancy. Sequences of 4 to 255 repeated
bytes are coded as the first 4 bytes followed by one byte
(0..251) representing the remaining count. For example,
"AAAAA" is coded as "AAAA",1.
2. BWT.
3. Move to front (section 5.4). Each byte is coded as its
position in a queue, then moved to the front of the queue.
Runs of identical characters thus become runs of zeros.
4. Run length encoding of of zeros. The run length is coded
in binary in LSB to MSB order by two symbols (RUNA,
RUNB) that have values 1 and 2 (instead of 0 and 1). Runs of
length 1 through 10 would be coded as 1, 2, 11, 21, 12, 22,
111, 211, 121, 221.
5. The symbols RUNA, RUNB, queue positions 1..255 (0 is
always run length encoded) and end of data symbol are
Huffman coded.

bzip2 uses 2 to 6 Huffman tables, which are selected every 50
symbols to make the code adaptive. The tables are kept in a
MTF queue. The selection code is unary coded. A unary code
for a number n is n 1 bits and a 0. For example, 4 = 11110.
The Huffman tables are coded as a sequence of lengths. The
lengths are delta coded, i.e. as the difference from the previous
length. A difference is coded as 0 = 0, 10 = -1, 11 = +1,
repeating as needed. A bitmap is used to mark unused queue
selection codes, which are omitted from the sequence. The
bitmap is divided into 16 16-bit words, where a 0 bit means the
code is not used. If all 16 bits are 0, then the word is omitted.
One additional 16 bit word is used to mark which words are
omitted.
The original bzip was arithmetic coded, which is better suited
for a fast adapting model. It was replaced with a Huffman code
due to patents (now expired) on arithmetic coding.

5.5.4. BBB

BBB (big block BWT) is an open source file compressor written
by Matt Mahoney in Aug. 2006. It has two innovations: a "slow"
mode that allows blocks up to 80% of available memory, and a
context mixing model of the BWT sequence. When released, it
was top ranked on the large text benchmark among BWT
compressors because it was the only program that could fit the
1 GB test file into a single block on a 2 GB machine.
5.5.4.1. Slow Mode BWT

http://en.wikipedia.org/wiki/Radix_sort
http://www.compressconsult.com/st/
http://www.patentstorm.us/patents/6199064/claims.html
http://en.wikipedia.org/wiki/Bzip2
file:///Z:\DCE_2010-02-26\index.html%23bbb

To context sort a large block, it is first divided into 16 smaller
blocks which are sorted normally. (BBB uses std::stable_sort(),
normally quicksort). The pointers are then written to 16
temporary files, which are merged to produce the final result.
The inverse transform does not build a linked list, because this
takes 4 times as much memory as the block size. Recall that
the inverse transform first sorts the bytes in the block into an
array T (represented by 256 cumulative counts), and that p
points to the next output byte in the block. The steps to be
iterated are:

1. output BWT[p]
2. if T[p] is the i'th occurrence of c in T, then set p to the i'th
occurrence of c in BWT.

Normally, step 2 is done by traversing a link in the list NEXT.
Instead, BBB searches the block for the i'th occurrence of c. To
do this efficiently, it first consults an index that locates every
16'th occurrence of c in BWT to get the approximate location,
and searches linearly from there. This index takes 1/4 as much
memory as the BWT block.

5.5.4.2. Modeling

BBB uses an order 0 indirect context model (section 4.1.3)
followed by 6 SSE stages and bitwise arithmetic coding. The
model uses 5 MB of memory. It looks like this:

 0.5 0.25 0.5

 + SSE1 ->+ +---->----+ +---->----+

 | | | | | |

 ICM ->+ +-> SSE3 -> SSE4 +-> SSE5 -+-+-> SSE6 -+-

> Encoder

 | |

 + SSE2 ->+

 0.5

The ICM takes a bytewise order 0 context, i.e. just the
previous bits of the current byte. Recall that an ICM maps a
context to a bit history (an 8 bit state), which is mapped to a
slow adapting probability table.
Each of the SSE (section 4.3.3) maps a context and a
probability (stretched and quantized to 32 levels) to a new
probability interpolated between the two nearest quantized
outputs. SSE1 and SSE2 are both order 0, but SSE1 is fast
adapting (learning rate 1/32) and SSE2 is slow adapting
(learning rate 1/512). The two predictions are averaged in the
linear domain. The SSE in BBB update both quantized table
entries above and below the input probability, unlike ZPAQ
which updates only the nearest.
SSE3 takes a bytewise order 1 context. SSE4 takes the
previous but not the current byte as context, plus the run length
quantized to 4 levels (0, 1, 2..3, 4+).
SSE5 takes a sparse order 1 context of just the low 5 bits and
a gap of 1 byte, i.e. 5 of the last 16 bits, plus the current byte:
...xxxxx The output is averaged linearly with the input with
weight 3/4 to the output.
SSE6 takes a 14 bit hash of the order 3 context. It is averaged
linearly with its input with weight 1/2 each.
The table below compares the models for bzip2 and BBB on
the Calgary corpus with each file compressed separately. In
both cases the block size is 900 KB, which is large enough to
hold each file in a single block. BBB is run in both fast and slow
modes. About half of the compression time in both cases is
due to PIC, which has long runs of 0 bytes. Unlike bzip2, BBB
has no protection against long string comparisons while
sorting.

Note also that compressing all of the data together as a tar file
makes compression worse. As mentioned, BWT is poorly
suited for mixed data types.

 Program Calgary Compr Decomp (seconds)

calgary.tar

 -------- ------- ----- ------ ---------

--

 bzip2 -9 828,347 0.68 0.42 860,097

 bbb cfk900 785,672 10.33 1.46 (fast mode) 800,762

 bbb ck900 785,672 13.74 5.54 (slow mode)

5.6. Predictive Filtering
A predictive filter is a transform which can be used to
compress numeric data such as audio, images, or video. The
idea is to predict the next sample, and then encode the
difference (the error) with an order 0 model. The decompresser
makes the same sequence of predictions and adds them to the
decoded prediction errors. Better predictions lead to smaller
errors, which generally compress better.

5.6.1. Delta Coding

The simplest predictive filter is a delta code. The predicted
value is just the previous value. For example, the sequence
(5,6,7,9,8) would be delta coded as (5,1,1,2,-1). A second pass
would result in (5,-4,0,1,-3).
Delta coding works well on sampled waveforms containing
only low frequencies (relative to the sampling rate), such as
blurry images or low sounds. Delta coding computes a discrete
derivative. Consider what happens in the frequency domain. A
discrete Fourier transform represents the data as a sum of sine
waves of different frequencies and phases. In the case of a
sine wave with frequency Ï‰ radians per sample and
amplitude A, the derivative is another sine wave with the same
frequency and amplitude Ï‰A. From the Nyquist theorem, the
highest frequency that can be represented by a sampled
waveform is Ï€ or half the sampling rate. Frequencies above 1
radian per sample will increase in amplitude after delta coding,
and lower frequencies will decrease. Thus, if high frequencies
are absent, it should be possible in theory to reduce the
amplitude to arbitrarily small values by repeated delta coding.
Eventually this fails because any noise (which is not
compressible) in the prediction is added to noise in the sample
with each pass. (Noise has a uniformly distributed spectrum, so
its high frequency components are amplified by delta coding).
Noise can come either from the original data or from
quantization (rounding) errors during sampling. These are
opposing sources. Decreasing the number of quantization
levels removes noise from the original data but adds
quantization noise.
The images below show the effects of 3 passes of delta coding
horizontally and vertically of the image lena.bmp (a widely used
benchmark image). The original image is in BMP format, which
consists of a 54 byte header and a 512 by 512 array of pixels,
scanned in rows starting at the bottom left. Each pixel is 3
bytes with the numbers 0..255 representing the brightness of
the blue, green, and red components. The image is delta
coded by subtracting the pixel value to the left of the same
color, and again on the result by subtracting the pixel value
below. (The order of the two encodings does not matter). To
show the effects better, 128 is added to all pixel values (which
does not affect compression). Thus, a pixel equal to its
neighbors appears medium gray.

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Delta_encoding
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Nyquist_rate
file:///Z:\lena\lena.bmp

Original image

Delta coded once horizontally and vertically.

Delta coded twice.

Delta coded 3 times.

The original image is 786,486 bytes (with or without delta
coding). The following table shows the compressed sizes when
compressed with an order 0 indirect context model (ICM-0),
with each of the 3 colors compressed in a separate stream.

 ICM-0

 lena.bmp 569,299

 delta 1 511,316

 delta 2 645,634

 delta 3 768,154

For comparison, Image Magick compresses to PNG format
with size 474,573, and the top ranked paq8px_v67 -6 to
412,641 bytes.
Details: The ICM-0 model was implemented in ZPAQ 1.10
using the following configuration:

 comp 0 0 0 0 1

 0 icm 7 (indirect context model using 2
7+6
 bytes)

 hcomp

 b++ a=b a== 3 if (b is 0,1,2 depending on color)

 a=0 b=0

 endif

 a<<= 9 *d=a halt (context is color in bits 10..9 +

order 0)

 post

 0

 end

5.6.2. Color Transform

lena.bmp can be compressed to 499,139 bytes by performing
the color transform (red, green, blue) to (red-green/4, green,
blue-green*3/4), then delta coding and modeling with ICM-0.
The transform was tuned to this image, but is not optimal for all
images. For many others, the transform (red-green, green,
blue-green) works well. The transform works because when
one color is brighter, the others tend to be too. Thus, one color
can predict the others. The ideal transform depend on the
average color of the image.

5.6.3. Linear Filtering

A linear filter is a finite impulse response filter with n taps that
predicts a sample xi in the sequence x1x2... as follows:

prediction = Î£j=1..n wj xi-j

where wj is called the j'th coefficient. A delta filter is the special
case of the coefficient array n = 1, w = (1). Two passes of a
delta filter is equivalent to n = 2, w = (2, -1), and 3 passes is
equivalent to n = 3, w = (3, -3, 1).
An adaptive filter is a linear filter whose coefficients are
adjusted to reduce prediction errors. A simple update rule is:

wj := wj + Î»xj-i(xi - prediction), j = 1..n

http://www.imagemagick.org/
http://en.wikipedia.org/wiki/Finite_impulse_response
http://en.wikipedia.org/wiki/Kernel_adaptive_filter

where Î» is the learning rate. The update rule is unstable
because of a positive feedback loop: when the error is large, it
can lead to large updates which could increase the error even
more. An adaptive filter must compensate by limiting the
magnitudes of the weights and updates.

5.7. Specialized Transforms
It is often possible to find transforms that improve compression
for specialized data types. We mention two.

5.7.1. E8E9

The E8E9 transform is used to compress x86 executable code
(EXE or DLL files). In x86, a CALL or JMP instruction (E8 or E9
hex) is followed by a 4 byte address (LSB first) relative to the
program counter. Compression can be improved by converting
to an absolute address, because code often contains many
calls or jumps to the same address. The transform consists of
searching for a byte with the value E8 or E9 hex (232 or 233),
interpreting the next 4 bytes as a 32 bit number, and adding
the offset from the beginning of the input file. The
decompresser does the same, except that it subtracts the
offset. E8E9 is used in CAB format (for CALL instructions only)
and in many top end compressors. Recent versions of
PAQ8PX by Jan Ondrus also transform conditional branch
addresses.
In x86-64, all references to static memory (not just JMP and
CALL) are relative addresses. Currently transforms for x86-64
are not yet widely used.

5.7.2. Precomp

Precomp is a program by Christian Schnaader that searches
its input for segments of data compressed in deflate (zip)
format and uncompresses them. This can improve
compression if the (now larger) data is compressed with a
better algorithm. Many applications and formats use deflate
compression internally, including PDF, PNG, JAR (Java
archive), ODT (OpenOffice) and SWF (Shockwave Flash).
To make the inverse transform bitwise identical, precomp tests
by recompressing the data with zlib and comparing it. Recall
that LZ77 is not a bijection. There are many different ways to
compress a string that will decompress the same way.
Precomp relies on the fact that most applications use zlib
rather than write their own implementation. Still, precomp must
test 81 combinations of options to find one that compresses to
exactly the original data, and then stores those options in the
output. If it fails to find a match (even in valid deflate data),
then it must insert additional data.
Precomp can be used by itself. It is also built into two
compressors, lprepaq (precomp+lpaq6) and paq8o8pre
(precomp+paq8o8). paq8o8pre -7 compresses flashmx.pdf
from the Maximum Compression corpus to 1,821,939 bytes in
692 seconds. As of Feb. 2010 the program has not yet been
benchmarked and the best result is 3,549,197 bytes by WinRK
3.1.2. The improvement is obtained partly by unzipping many
embedded BMP images and compressing them with paq8o8's
specialized BMP model (which is also top ranked on
rafale.bmp).

5.8. Huffman coding
The open source file compressor M1x2 v0.6 by Christopher
Mattern in Feb. 2010 uses order 1 Huffman coding as a
preprocessor to a context mixing model. The idea is to reduce
the size of the input to make compression faster. The model
contexts are aligned on Huffman code boundaries instead of
byte boundaries. The order 1 coder is actually 256 tables
selected by the previous byte. Huffman codes are limited to 12
bits in length to simplify the implementation.

6. Lossy Compression

Lossy compression refers to discarding unimportant
information. Generally this means compressing images, video,
or audio by discarding data that the human perceptual system
cannot see or hear.
Lossy compression is a hard AI problem. To illustrate, speech
could theoretically be compressed by transcribing it into text
and compressing it with standard techniques to about 10 bits
per second. We are nowhere near that.
Even worse, we could imagine a lossy video compressor
translating a movie into a script, and the decompresser reading
the script and creating a new movie with different details but
close enough so that the average person watching both movies
one after the other would not notice any differences. We may
use a result by Landauer (1986) to estimate just how tiny this
script could be. He tested people's memory (over a period of
days) over a wide range of formats such as words, numbers,
pictures and music, and concluded that the human brain writes
to long term memory at a fairly constant rate of about 2 bits per
second. Currently we need 10

7
 bits per second to store DVD

quality MPEG-2 video.
The state of the art is to apply lossy compression only at a
very low level of human sensory modeling, where the model is
well understood.

6.1. Image Compression
All image formats, even BMP, may be regarded as a form of
lossy image compression. An uncompressed image is normally
a 2 dimensional array of pixels, where each pixel has 3 color
components (red, green, blue) represented as an integer with a
fixed range and resolution. A pixel array is an approximation of
a 2 dimensional continuous field where the light intensity at any
point would be properly described as a continuous spectrum.
Note how lossy compression is applied:

 The eye can't see detail much smaller than 0.1 mm, so
there is no need for an image to have more than a few
thousand pixels in each dimension.

 The eye can't detect differences in brightness of less than
about 1%, so there is no need to quantize brightness to more
than a few hundred levels.

 The eye has 3 types of cones sensitive to red, green, and
blue. Combinations of these colors can reproduce every color
that the eye can see. There is no need to distinguish pure
spectral yellow emitted by a rainbow from the apparent yellow
from a monitor produced from a mixture of red and green
light, even though there are instruments such as a
spectrograph that can make such distinctions.

 The eye detects brightness on a logarithmic scale, so there
is no need to use more bits to represent brighter lights.
Sunlight is 1000 times brighter than room light, but doesn't
look like it.

6.1.1. BMP

A BMP image uses 8 bits per pixel per color, which matches
the resolution of most monitors. Each value is an 8 bit number
ranging from 0 (darkest) to 255 (brightest). The values are
proportional to apparent light intensity, not actual intensity. The
actual intensity is gamma corrected by the monitor by raising it
to the power of Î³ = 2.2. Thus, a pixel value of 200 is a little
over 4 times as bright as a pixel value of 100, although it only
looks twice as bright.

6.1.2. GIF

The GIF image format is lossless except that it uses a color
palette of up to 256 colors. The format is an array of 8 bit
indexes into the palette. The limited number of colors
noticeably reduces the quality of color photographs, although it
is sufficient for grayscale or diagrams. A GIF file may contain
multiple images for animations.
GIF uses LZW compression (section 5.3.1) with a maximum
dictionary size of 4K. When the table is full, it is discarded and

http://schnaader.info/precomp.html
http://www.zlib.net/
http://www.maximumcompression.com/data/pdf.php
http://www.maximumcompression.com/data/bmp.php
http://freenet-homepage.de/toffer_86/m1x2_0.6_100206.7z
http://www.cogsci.rpi.edu/CSJarchive/1986v10/i04/p0477p0493/MAIN.PDF
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/wiki/Graphics_Interchange_Format#Example_GIF_file

re-initialized. It reserves two codes to initialize the table and to
mark the end of data.
Use of GIF was discouraged due to a patent on LZW, which is
now expired.

6.1.3. PNG

PNG is a lossless image format. Images are normally 8 bits
per pixel but can be more. A pixel has 3 color components and
an optional fourth component for an alpha channel to indicate
transparency.
PNG is compressed by predictive filtering (section 5.6)
followed by deflate (section 5.2.2). There are 5 filters which can
be selected for each scan line. The image is scanned left to
right starting at the top. Let A, B, and C be the previously
coded neighboring pixels of the predicted pixel x:
 C B

 A x

The 5 possible predicted values are 0, A, B, (A+B)/2, or Paeth.
The Paeth filter is to predict A, B, or C, whichever is closest to
A + B - C. The Paeth filter usually gives the best compression.

6.1.4. TIFF

TIFF is an image container format. Most commonly it is used
for uncompressed images when BMP cannot be used because
more than 8 bits per pixel or more than 3 color components are
needed. TIFF supports several lossless compression modes.
The most common is delta coding (subtracting the pixel to the
left) followed by LZW.

6.1.5. JPEG

JPEG is the most widely used representation for photographic
images. It uses lossy compression. It exploits two limitation of
human visual perception. First, the eye has different degrees of
sensitivity to brightness variation depending on spatial
frequency, peaking at 0.1 to 0.2 degrees (a few pixels).
Second, the eye is much less sensitive to color variation at
high spatial frequencies. The compression steps for baseline
JPEG are as follows:

 Color transform from RGB to YCbCr.

 Downsampling the two chroma components Cb and Cr.

 8 by 8 discrete cosine transform (DCT).

 Variable quantization depending on color and spatial
frequency.

 Delta coding the DC coefficient.

 Reordering the coefficients in zigzag order from low to high
frequency.

 Huffman coding with run length encoding of zeros.
The color transform from RGB (red, green, blue) to YCbCr is:

Y = 0.299 R + 0.587 G + 0.114 B (black-white)
Cb = 128 - 0.168736 R - 0.331264 G + 0.5 B
(yellow-blue)
Cr = 128 + 0.5 R - 0.418688 G - 0.081312 B
(green-red)

The eye is less sensitive to fine detail in Cb and Cr than in Y,
so these two are (optionally) downsampled 2 to 1 by averaging
2 by 2 blocks of pixels into 1 pixel.
The DCT represents 8 by 8 blocks of pixels in the spatial
frequency domain. The 64 DCT coefficients Suv, u, v in 0..7, of
the 8 by 8 pixel block Sxy, x, y in 0..7, are computed as follows:

Suv = Î±(u)Î±(v) Î£x=0..7Î£y=0..7 Sxy cos[Ï€/8
(x+1/2) u] cos[Ï€/8 (y+1/2) v]

where Î±(0) = 1/8
1/2

 and Î±(1..7) = 1/4 are normalizing factors.
u is the horizontal spatial frequency and v is the vertical spatial
frequency. The image below shows the contribution of each of
the 64 Suv DCT coefficients to an 8 by 8 pixel block with u
reading across and v reading down. The S00 coefficient is at
the top left.

8 by 8 DCT (from Wikipedia).

Each of the 64 coefficients in Y and the 64 in Cb and Cr are
quantized by dividing by one of 128 values from two
quantization tables and rounding. Because the eye is less
sensitive to high spatial frequencies (u and v large), especially
in the two chroma components, these divisors can be larger.
The coefficient S00 is the average brightness of the 8 by 8
block. It is called the "DC" coefficient. It is the only one that
depends significantly on neighboring blocks, so it is delta
coded by subtracting the DC coefficient of the last coded block
of the same color. The other 63 coefficients are called "AC".
For most images, the high spatial frequencies will be small
except in regions with fine detail. Therefore the coefficients are
reordered in zigzag order by increasing u+v, resulting in the
largest coefficients appearing first.
The coefficients are grouped into runs of R zeros followed by
one nonzero value, where R ranges from 0 to 15. The nonzero
coefficient is a 12 bit signed number, but is usually near 0. It is
coded as an S bit signed number, where S ranges from 1 to
12, followed by S extra bits. For example, the sequence
0,0,0,0,0,3 would be coded as R=5,S=2,11. The RS code (52)
would be Huffman coded, and the two bits "11" (binary 3)
would follow uncompressed. Negative numbers are coded by
subtracting 1 and sending the same number of bits. For
example, -3 would be coded as "00", which are the last 2 bits
of -4. After the last nonzero coefficient, a RS code of 00 marks
the end of block.
There are 4 Huffman tables for the RS codes, one each for
DC-Y, DC-color, AC-Y, and AC-color. The tables are
transmitted by sending 16 lists of RS codes (1 byte each)
having code lengths of 1 through 16. Each list is preceded by
one byte to indicate the length of the list. Other data such as
the quantization tables are sent uncompressed. Huffman codes
are packed in MSB to LSB order.
JPEG supports inserting restart codes into the Huffman coded
data to mark the start of independently compressed image
slices for error recovery. There is also an end of image symbol.
The Huffman code is designed so that symbols can be found
without decoding. Symbols are marked with a starting FF byte
(11111111 binary). No symbol is assigned a Huffman code of
all 1 bits. Also, if a byte of all 1 bits is coded, then it is followed
by a 0 byte which the decoder skips.
The JPEG specification describes several modes in addition to
baseline, described above. About 95% of images are baseline
JPEG. The rest are mostly progressive mode. In this mode, a
coarse approximation of the image is sent first so that the
receiver can start displaying it before the rest of it is received.
Progressive mode uses two techniques to do this. One is
spectral selection, in which the low frequency DCT coefficients
are sent first. The other is progressive approximation, in which
the high order bits of the coefficients are sent first. Usually both
techniques are combined.
JPEG allows up to 4 colors (for an alpha channel) and 12 bits
per pixel. These modes are rare, but are supported by the IJG

http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Tagged_Image_File_Format
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/Discrete_cosine_transform#Multidimensional_DCTs
http://en.wikipedia.org/wiki/Discrete_cosine_transform#Multidimensional_DCTs
http://www.ijg.org/
http://www.ijg.org/

reference implementation. Images may also be grayscale by
dropping the Cb and Cr components.
The JPEG standard also describes arithmetic coding as an
alternative to Huffman coding, and a lossless hierarchical
mode in which successively higher resolution images are sent
as differences from the previous one. Neither of these two
were implemented by IJG or any subsequent software because
the methods were patented at the time.
In 2002, Forgent claimed U.S. patent 4,698,672 on JPEG,
specifically the invention of using a single code to represent a
run length followed by a second value, which is used in the RS
codes. By April 2004, Forgent announced that it had collected
US$90 million from 30 companies and filed patent infringement
suits against 31 others. In May 2006 the USPTO ruled that the
claims of the patent related to JPEG were invalid due to prior
art. The patent expired 5 months later.
The images below show the effects of the color transform and
DCT. The first image was created using IJG's public domain

software cjpeg to convert lena.bmp (786,486 bytes) to JPEG
(23,465 bytes). This is 17.5 times smaller than the best result
obtained with lossless compression.

Left: lena.bmp, 786,486 bytes. Right: JPEG created with cjpeg

-quality 50 -optimize, 23,465 bytes.
The -quality setting sets the quantization tables. These range
from 16 for the Y-DC coefficient to 99 for high frequency
coefficients. The -optimize parameter creates the best possible
Huffman tables.
The images below show a JPEG image separated into its
three color components by setting all of the other coefficients to

0. All images below are high quality (-quality 100) without
chroma downsampling as above.

Y coefficients only.

Left: Cb only. Right: Cr only.

The images below separate some of the different frequency
coefficients.

http://en.wikipedia.org/wiki/Forgent_Networks
http://www.ijg.org/

S00 (DC)

First two AC coefficients. Left: S01. Right: S10. Note that these

are color images.

Left: S20. Right: S11.

The following image illustrates the eye's insensitivity to fine
detail in Cb and Cr. All of the 63 AC coefficients in Cb and Cr
are set to 0, and yet the effect is barely noticeable. Compare
with S00 above when the Y AC coefficients are also removed.

All 63 AC chroma coefficients set to 0.

6.2. Video Compression
Video approximates continuously moving images by using a
sequence of still images, called frames. The neural circuitry of
the human visual system has a delayed response to light on
the order of tens of milliseconds. Thus, a frame rate of at least
24 to 30 per second produces a sensation that is nearly
indistinguishable from continuous motion. However, simply
flashing images at this rate would produce a noticeable flicker.
The eye can detect flicker at rates of up to about 75 flashes per
second. Sensitivity to flicker increases in bright light, toward the
blue end of the spectrum, and in peripheral vision away from

the fovea where visual acuity is sharpest. Thus, a computer
monitor viewed up close requires a higher refresh rate than a
television viewed from a distance. Movie theatres display 24
frames per second and remove flicker by flashing each frame
on the screen two to four times.
Video frames do not have to have as much resolution as still
images. The eye moves in saccades, jumping from one part of
the image to another at a rate of 30 to 70 times per minute. In
still images, the eye is attracted to regions of high contrast
such as edges or corners, and to areas of interest such as
faces. In text, the eye jumps from word to word. This requires

http://en.wikipedia.org/wiki/Flicker_%28screen%29
http://en.wikipedia.org/wiki/Fovea_centralis_in_macula
http://en.wikipedia.org/wiki/Saccade

all of the image to be displayed in fine detail. In video, there is
not enough time to look at more than one part of a frame
before the next frame is displayed. Thus, the rest of the frame
can be displayed at a low resolution.
Between saccades, the eye tracks moving objects smoothly. If
a frame is displayed more than once or for more than a small
fraction of the frame interval, then the effect is to blur the object
as the eye moves across each frame.
Time sampling of images can produce artifacts such as the
wagon wheel effect, where a spoked wheel appears to spin
slowly backward. This artifact is analogous to the Moire effect
caused by spatial sampling of a repeating pattern in still
images.

6.2.1. NTSC

NTSC is one of three standards for analog television, the
others being PAL and SECAM, used in different parts of the
world. NTSC standardized black and white television in 1941
and color TV in 1953 in North America. It was used until 2009
for over the air broadcasts in the U.S., when it was replaced by
HDTV.
NTSC is displayed at 29.97 frames per second. Each frame
consists of 525 horizontal scan lines starting at the top left
corner of the screen. To reduce flicker, the display is
interlaced: each frame is divided into two fields which
alternately display the even and odd numbered lines. (PAL and
SECAM use 625 scan lines at a rate of 50 fields or 25 frames
per second). NTSC is an analog format, so there is no concept
of a "pixel". However, the luma (brightness) signal is
transmitted over a band that extends about 4.5 MHz above the
carrier. This corresponds to a Nyquist sampling rate of 9 million
pixels per second, equivalent to about 571 pixels per scan line.
When color TV was introduced in 1953, a chroma signal was
added without increasing the bandwidth or breaking
compatibility with black and white TV sets. The spectrum
allocation is shown below.

NTSC frequency allocation (from Wikipedia).

The video signal is split into three color components similar to
YCbCr as in JPEG. The black-white (luma) signal is
unchanged. It is amplitude modulated in the same band of 4.95
MHz. The blue-yellow and red-green signals are transmitted in
a smaller band with a width of 2 MHz that overlaps the luma
signal. A narrower band is possible because the eye is less
sensitive to high spatial frequencies in chroma (especially blue-
yellow) than luma. The two signals are amplitude modulated 90
degrees out of phase, allowing them to be separated by the
receiver.
Because the luma and chroma overlap, the color signal can
produce black and white artifacts and vice versa. The carrier
frequencies are carefully chosen so that the artifacts of
successive frames cancel out, reducing their visibility.

6.2.2. MPEG

MPEG is the most widely used format for video compression.
The most commonly used versions are as follows.

 MPEG-1 is the original version of the standard, published in
1993. It specifies non-interlaced video at bit rates up to 1.5

Mbits/second. All patents on the video portion of the
specification have expired. MPEG-1 layer 3 audio (MP3) is
still patent protected.

 MPEG-2 extends MPEG-1 to interlaced video and higher
bit rates to support digital television. It is the format used for
most DVD video and for HDTV. In spite of minor differences
between MPEG-1 and MPEG-2, it is protected by about 600
patents by dozens of companies. Licenses are managed by
the MPEG Licensing Authority (MPEG-LA).

 MPEG-4 part 10, also known as H.264 or AVC (Advanced
Video Codec) compresses video to about half the size of
MPEG-1 or 2 at a similar quality level. It is widely used in
Youtube and Google Video. It is also patented and licensed
by MPEG-LA.

Although video files can stand alone, they are more often
embedded in a container format such as AVI or streamed
through a Flash player. MPEG-2 defines a transport stream for
over the air transmission of HDTV by encapsulating the data in
188 byte packets with error correction.
MPEG-1 and MPEG-2 use a compression algorithm similar to
JPEG, but obtain additional compression by delta coding
between frames with motion compensation. There are 3 types
of frames, designated I (inter-frame), P (predictive), and B
(bidirectional). An I-frame can be decoded by itself. A P-frame
is described in terms of differences from the previous frame. A
B-frame is described in terms of difference from both the
previous and next frame. A typical pattern is one I-frame every
0.5 seconds, repeating the sequence IBBPBBPBBPBBPBB. To
facilitate decoding, the frames are sent out of order with the B
frames sent after any future frame it depends on. The decoder
then reorders the frames before displaying them. The reason
for having I frames every 0.5 seconds is to allow decoding to
start from the middle of a video after rewinding or fast
forwarding.
Motion compensation is implemented by dividing a frame into
16 by 16 macroblocks. A macroblock in a P or B frame is
decoded using a motion vector which points to a same sized
region of the previous (or next) decoded image with a specified
offset horizontally and vertically. After motion compensation, P
and B frames are encoded using a JPEG-like algorithm as with
I frames.
It is up to the encoder to find good matches in adjacent frames
for encoding macroblocks. The encoder calculates the
differences from the decoded image, not the original, by
encoding and then decoding the adjacent frame.
Frame compression is like JPEG except that it uses fixed
Huffman tables (called variable length codes) and fixed
quantization tables with only a scale factor transmitted. MPEG
is often transmitted at a constant bit rate, which is achieved by
adjusting the quantization scale factor as needed. For DVDs,
the maximum bit rate is about 10 Mbits/second. The result is
that scenes with lots of motion are transmitted at a lower
resolution.
MPEG-4/AVC (H.264) differs from MPEG-1/2 mainly in that it
uses a wavelet transform instead of a discrete cosine transform
(DCT), and supports arithmetic coding in addition to Huffman
coding. It also supports variable sized macroblocks, from 4 by
4 to 16 by 16, with motion vectors pointing to any of 16
adjacent frames (or 32 fields) in 1/4 pixel resolution. Fractional
motion vectors are obtained by using a 6 tap filter to infer half
pixel intensities, followed by simpler interpolation.

6.3. Audio Compression
Lossy audio compression uses a psychoacoustic model to
determine which part of the signal can be discarded without
changing the original sound. The human ear can only perceive
sounds in the range 20 Hz to 20 KHz. Sensitivity peaks around
1 KHz to 5 KHz, the middle of the range of human speech.
Frequency resolution is 3.6 Hz in the range 1 KHz to 2 KHz.
Like the eye, the ear perceives sound on a logarithmic scale.
The range of hearing is from 0 decibels, the threshold of

http://en.wikipedia.org/wiki/Wagon-wheel_effect
http://en.wikipedia.org/wiki/Moir%C3%A9_pattern
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group
http://en.wikipedia.org/wiki/MPEG-1
http://en.wikipedia.org/wiki/MPEG-2
http://www.mpegla.com/
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://youtube.com/
http://video.google.com/
http://en.wikipedia.org/wiki/Audio_Video_Interleave
http://en.wikipedia.org/wiki/SWF
http://en.wikipedia.org/wiki/MPEG_transport_stream
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Psychoacoustics
http://en.wikipedia.org/wiki/Decibel#Acoustics

hearing, to 120 decibels, which is loud enough to be painful
and cause hearing damage. An increment of 10 decibels (dB)
represents an increase in power by a factor of 10, although we
perceive it as closer to twice as loud. An increment of 20 dB
represents an increase in amplitude by a factor of 10 (because
power is proportional to amplitude squared).
The logarithmic scaling is partially due to the masking effect, in
which a sound decreases sensitivity to other sounds at
different frequencies that occur at the same time (frequency
masking) or other sounds at the same frequency that occur
earlier or later (temporal masking). The graph below illustrates
how frequency masking affects the threshold of hearing.
Temporal masking has an exponentially decaying effect,
starting from about 20 milliseconds before the sound to 100
milliseconds afterward.

The effect of frequency masking on the threshold of human

hearing (from Wikipedia).

Humans can perceive the direction of a sound source to an
accuracy of about 3 degrees. Stereoscopic sound perception
depends on two effects. First, a sound is louder in the ear
closer to the source. Second, there is a time delay in reaching
the further ear because sound travels at about 300 meters per
second through air. Earphones can reproduce both of these
effects, but stereo speakers typically do not. The sound seems
to come from one speaker or the other or from some point in
between. This has led to sound systems with more than 2
channels.
High frequency sounds are harder to locate when the distance
between the ears is more than 1/2 wavelength because the
phase shift is ambiguous and because neurons can't fire fast
enough to transmit phase information. This occurs at around
1.5 KHz. This suggests an approach of transmitting stereo
information (left minus right) at a lower bandwidth.
The simplest form of lossy audio compression is to filter out
the high frequencies where most of the information is located.
AM radio discards frequencies above 10.5 KHz. FM uses a
bandwidth of 15 KHz for the mono signal (left plus right) and 13
KHz for the stereo signal.
DS0 digital telephony uses a sampling rate of 8 KHz, which
requires filtering out all audio above the Nyquist rate of 4 KHz.
In practice, audio above 3.3 to 3.5 KHz is filtered out. Each
sample is 8 bits which is companded, or quantized on a
logarithmic scale. Essentially, each 8 bit value is a floating
point representation of a 14 bit integer (78 dB dynamic range)
using a sign bit, 3 exponent bits and 4 mantissa bits. This 64
Kbit/second signal is sufficient to reproduce speech in spite of
the fact that some sounds such as /s/ are almost entirely
outside the bandwidth (4 to 8 KHz).
CD audio is stored uncompressed. It consists of two channels
sampled at 44.1 KHz (22.05 maximum frequency) at 16 bits
per sample (90 dB range). The bit rate is 1411.2 Kbit/second.
Lossy audio formats such as MP3, AAC, Dolby, and Ogg
Vorbis are based on dividing the audio into blocks of samples,
computing the modified (overlapped) discrete cosine transform

(MDCT), quantizing, and transmitting the coefficients without
further compression. Quantization uses the psychoacousitic
model to determine the appropriate precision at each
frequency. All formats support a wide range of sampling rates,
compressed bit rates, and number of channels. All but Ogg
Vorbis are protected by patents.
All of these formats support joint frequency encoding, a
technique which compresses the stereo (left minus right)
signal. Because the ear can detect intensity differences but not
timing differences at high frequencies, this part of the stereo
signal can be removed and replaced with information to control
the overall intensity for each channel.
MP3 (MPEG-1 layer III) was the first widely used compressed
format for encoding music on the Internet. Audio is divided into
blocks of either 576 samples, or 192 samples to encode
transients (rapid changes in the audio signal). Two channels
(left and right) are supported. Good quality is achieved at a bit
rate of 128 Kbits/seconds, or 9% of uncompressed CD audio.
Bit rates can be variable.
AAC (Advanced Audio Codec, MPEG-2 part 7) is the default
audio format used by Apple's iPod and iTunes. It is understood
by most music players, phones, and video game consoles.
AAC supports a greater range of bit rates and sampling rates
than MP3. Block sizes are 1024 and 128 samples (or 960 and
120 depending on sampling rates). Good quality audio is about
96 Kbits/second.
Dolby Digital (AC-3, ATSC A/52) is the audio format used in
DVDs and HDTV. It supports 5.1 Surround Sound. The "5.1"
refers to 5 channels (left front, right front, left rear, right rear,
center) and a low frequency subwoofer channel.
Ogg is a free, open source container for the Vorbis audio
format. At a bit rate of 96 Kbits/second it has an audio quality
slightly better than AAC and better than MP3.
The MDCT computes N frequency coefficients from 2N
samples x0..x2N-1 in 2 adjacent blocks. The overlap is
necessary to prevent artifacts where the blocks join together.
The coefficients are computed:

Xk = Î£i=0..2N-1 wi xi cos[(Ï€/N)(i + (N+1)/2)(k +
1/2)], k = 0..N-1

The coefficients Xk represent frequencies ranging from 1/2Ï€N
up to the Nyquist rate 1/2. The inverse transform (IMDCT) has
the same form:
yi = (wi/N) Î£k=0..N-1 Xk cos[(Ï€/N)(i + (N+1)/2)(k + 1/2)], i = 0..2N-
1
The inverse transform has N inputs and 2N outputs. To
complete the transform, the two overlapping sets of samples, yi
and yi+N, from adjacent blocks are added together. To minimize
boundary artifacts, the window function weights w0..2N-1 are
selected such that the weights at the ends (near 0 and 2N-1)
go to 0 and are 1 in the middle, usually with a rounded shape.
Because each weight is used twice in each block, they must
satisfy wi

2
 + wi+N

2
 = 1. MP3 and AAC use the window:

wi = sin[(Ï€/2N)(i + 1/2)].
Vorbis uses:
wi = sin{(Ï€/2) sin

2
[(Ï€/2N)(i + 1/2)]}

Dolby AC-3 uses a Kaiser-Bessel derived window, which has a
similar shape.

Conclusion
Data compression is the art of finding short descriptions for
long strings. Every compression algorithm can be decomposed
into zero or more transforms, a model, and a coder. Coding is
a solved problem. Given a symbol with probability p, Shannon
proved that the best you can do is code it using log2 1/p bits.
An arithmetic coder does this efficiently.
There is no general procedure for finding good models or
prediction algorithms. It is both an art and a hard problem in
artificial intelligence. There is (provably) no test to tell you if a
string can be compressed or if a better model exists.

http://en.wikipedia.org/wiki/Psychoacoustics#Masking_effects
http://buschmeier.org/bh/study/soundperception/
http://en.wikipedia.org/wiki/AM_broadcasting
http://en.wikipedia.org/wiki/FM_broadcasting
http://en.wikipedia.org/wiki/DS0
http://en.wikipedia.org/wiki/Companding
http://en.wikipedia.org/wiki/Red_Book_%28audio_Compact_Disc_standard%29
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://en.wikipedia.org/wiki/Dolby_Digital
http://en.wikipedia.org/wiki/Vorbis
http://en.wikipedia.org/wiki/Vorbis
http://en.wikipedia.org/wiki/Vorbis
http://en.wikipedia.org/wiki/Joint_%28audio_engineering%29
http://en.wikipedia.org/wiki/Surround_sound
http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
http://en.wikipedia.org/wiki/Kaiser-Bessel_derived_%28KBD%29_window#Kaiser-Bessel_derived_.28KBD.29_window

Prediction is closely related to understanding. If you
understand Chinese, then you can predict a sequence of
Chinese symbols. This principle can be applied to context
modeling. Useful contexts are semantically independent units,
for example, words in text, instructions in executable code,
fields in a database, or recognizable features in an image.
Different symbols that have similar meanings should be treated
as if they were the same context. For example, in text, it is
useful to merge upper and lower case, spaces and newlines, or
related words like "someone" and "somebody" or "cold" and
"wet". A context model for images would distinguish blue from
green pixels but ignore fine differences. The best compressors
combine the predictions of many independent models.
Preprocessing transforms are optimizations that sacrifice
compression for speed and memory. Often, the output can be
compressed with a simple order 0 or low order model. A
transform by itself does not compress. It may hide useful
contexts and add arbitrary information that makes the output
ultimately larger. A good transform should minimize these
effects. Thus, a BWT compressor that works on words as units
would compress text better than the usual case of sorting
bytes. Likewise, an LZ77 compressor that replaced duplicate
strings on whole word boundaries would be preferred.
Dictionary preprocessors improve both BWT and LZ77
compression by forcing those transforms to split the input on
word boundaries. The best compressors on the large text
benchmark use dictionary preprocessing, but I believe that is
because the benchmark is tightly constrained by memory.
When computers with hundreds of gigabytes become
available, I believe that the top ranked programs will no longer
use large dictionaries.
Lossless compressors ignore meaningless data in selecting
contexts. Meaningless or random data has no predictive value
and is itself not compressible. A lossy compressor not only
ignores the meaningless data, but also discards it completely.
Deciding which data is meaningful is a hard AI problem that
applies to both lossless and lossy compression. Both require a
deep understanding of human cognitive psychology.
Coding theory says that the vast majority of strings do not
have simple descriptions, so it is rather remarkable that
compressible strings are so common in practice. Solomonoff,
Kolmogorov, and Chaitin independently proposed that strings
have a universal probability proportional to 2

-|M|
, where M is its

shortest description, independent of the language in which M is
written. Kolmogorov proved that there is no algorithm for
finding such descriptions in any language. Hutter showed that
the compression problem, if it were computable, would solve
the general AI problem of optimizing arbitrary utility functions.
In effect, he proved Occam's Razor, which is the foundation of
all science: the simplest theory that explains the past is the
best predictor of future events.
The prevalence of compressible strings, and thus science,
depends on two facts. First, that all strings are the result of
computable (or finitely describable) processes, and second,
that shorter programs or descriptions are more likely than
longer ones. To show the second, consider a probability
distribution over the infinite set of all finite length descriptions.
Any such distribution must favor shorter descriptions. Consider

any description M having probability p > 0. There can be at
most a finite number (1/p) of more likely descriptions, and
therefore an infinite number of less likely descriptions. Of the
latter, there can be at most a finite number (2

|M|
 - 1) that are

shorter than M. Therefore there must be an infinite number of
less likely descriptions that are longer than M, for all M.
The question remains whether all strings found in the real
world are created by computable or finitely describable
processes. This must be true for finite strings, but there are
known to exist, at least in mathematics, infinite length strings
such as Chaitin's constant Î© (the probability that a random
program will halt) that are not computable. In fact, the vast
majority of infinite length strings do not have finite length
descriptions. Could there exist phenomena in the real world
that have infinite length descriptions that are not compressible?
For example, would it be possible to take an infinite number of
measurements or observations, or to measure something with
infinite precision? Do there exist infinite sources of random
data?
The laws of physics say no. At one time it was believed that
the universe could be infinitely large and made up of matter
that was infinitely divisible. The discoveries of the expanding
universe and of atoms showed otherwise. The universe has a
finite age, T, about 13.7 billion years. Because information
cannot travel faster than the speed of light, c, our observable
universe is limited to an apparent 13.7 billion light years,
although the furthest objects we can see have since moved
further away. Its mass is limited by the gravitational constant,
G, to a value that prevents the universe from collapsing on
itself.
A complete description of the universe could therefore consist
of a description of the exact positions and velocities of a finite
number (about 10

80
) of particles. But quantum mechanics limits

any combination of these two quantities to discrete multiples of
Planck's constant, h. Therefore the universe, and everything in
it, must have a finite description length. The entropy in nats (1
nat = 1/ln(2) bits = 1.4427 bits) is given by the Bekenstein
bound as 1/4 of the area of the event horizon in Planck units of
area hG/2Ï€c

3
, a square of 1.616 x 10

-35
 meters on a side. For

a sphere of radius Tc = 13.7 billion light years, the bound is
2.91 x 10

122
 bits.

We now make two observations. First, if the universe were
divided into regions the size of bits, then each volume would be
about the size of a proton or neutron. This is rather remarkable
because the number is derived only from the physical
constants T, c, h, and G, which are unrelated to the properties
of any particles. Second, if the universe were squashed flat, it
would form a sheet about one neutron thick. Occam's Razor,
which the computability of physics makes true, suggests that
these two observations are not coincidences.

Acknowledgements
I thank Sami Runsas, David A. Scott, Christopher Mattern, and
Jan Ondrus for helpful comments on this book.

http://en.wikipedia.org/wiki/Chaitin%27s_constant
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Planck_constant
http://en.wikipedia.org/wiki/Nat_%28information%29
http://en.wikipedia.org/wiki/Bekenstein_bound
http://en.wikipedia.org/wiki/Bekenstein_bound
http://en.wikipedia.org/wiki/Bekenstein_bound
http://en.wikipedia.org/wiki/Planck_units

References
T. Bell, I. H. Witten. J. G. Cleary (1989), Modeling for Text Compression, ACM Computing Surveys (21)4, pp. 557-591.
C. Bloom (1998), Solving the Problems of Context Modeling.
M. Burrows, D. J. Wheeler (1994), A Block-sorting Lossless Data Compression Algorithm, Digital Systems Research Center.
G. Chaitin (1966), On the length of programs for computing finite binary sequences. Journal of the ACM, 13:547-569.
G. Cleary, W. J. Teahan (1995), Experiments on the zero frequency problem, Proc. Data Compression Conference, 480.
G. Cormack, N. Horspool (1987), Data compression using dynamic Markov modeling, Computer Journal 30:6 (December).
P. Deustch (1996), RFC 1951 - DEFLATE Compressed Data Format Specification version 1.3.
J. Duda (2007), Optimal encoding on discrete lattice with translational invariant constrains using statistical algorithms (section
3).
M. Gagliolo (2007), Universal search. Scholarpedia, 2(11):2575.
D. Huffman (1952), A Method for the Construction of Minimum-Redundancy Codes. Proc. I.R.E.: 1098-1101.
M. Hutter (2004), Universal artificial intelligence: Sequential Decisions based on algorithmic probability. Springer, Berlin.
M. Hutter et al. (2007), Algorithmic probability. Scholarpedia, 2(8):2572.
A. Kolmogorov (1965), Three approaches to the quantitative definition of information. Problems Inform. Transmission, 1, 1-7.
T. Landauer (1986), How much do people remember? Some estimates of the quantity of learned information in long term
memory, Cognitive Science (10) 477-493.
S. Legg, M. Hutter (2006), A Formal Measure of Machine Intelligence, Proc. Annual machine learning conference of Belgium
and The Netherlands (Benelearn-2006). Ghent.
L. A. Levin (1973), Universal sequential search problems. Problems of Information Transmission, 9(3):265--266.
L. A. Levin (1984), Randomness Conservation Inequalities: Information and Independence in Mathematical Theories.
Information and Control, 61:15-37.
M. Mahoney (2000), Fast Text Compression with Neural Networks, Proc. AAAI FLAIRS, Orlando.
M. Mahoney (2002), The PAQ1 Data Compression Program
M. Mahoney (2005a), Adaptive Weighing of Context Models for Lossless Data Compression, Florida Tech. Technical Report
CS-2005-16.
J. Rissanen (1976), Generalized Kraft Inequality and Arithmetic Coding, IBM Journal of Research and Development 20(3):
198â€“203.
J. Schmidhuber, S. Heil (1996), Sequential Neural Text Compression, IEEE Trans. on Neural Networks 7(1): 142-146.
C. Shannon, W. Weaver (1949), The Mathematical Theory of Communication, Urbana: University of Illinois Press.
C. E. Shannon (1950), Prediction and Entropy of Printed English, Bell Sys. Tech. J. 3:50-64.
D. Shkarin (2002), PPM: one step to practicality, proc. DCC.
R. Solomonoff (1960), A Preliminary Report on a General Theory of Inductive Inference, Report V-131, Zator Co., Cambridge,
Ma.
R. Solomonoff (1964), A Formal Theory of Inductive Inference, Information and Control, 7(1) 1-22, 7(2) 224-254.
A. M. Turing, (1950), Computing Machinery and Intelligence, Mind, 59:433-460.
I. H. Witten, T. C. Bell (1991), The zero-frequency problem: estimating the probabilities of novel events in adaptive text
compression, IEEE Trans. on Information Theory, 37(4): 1085-1094.
J. Ziv, A. Lempel (1977), A universal algorithm for sequential data compression, IEEE Trans. Information Theory 23(3) 337-
343.
J. Ziv, A. Lempel (1978), Compression of Individual Sequences via Variable-Rate Coding, IEEE Transactions on Information
Theory, 24 (5), 530-536.
Note: Website links are current as of Feb. 2010.

http://www.cbloom.com/papers/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177
http://www.faqs.org/rfcs/rfc1951.html
http://uk.arxiv.org/PS_cache/arxiv/pdf/0710/0710.3861v1.pdf
http://www.scholarpedia.org/article/Universal_search
http://www.scribd.com/doc/20852918/Huffman-1952-Minimum-Redundancy-Codes
http://www.scholarpedia.org/article/Algorithmic_probability
http://www.cogsci.rpi.edu/CSJarchive/1986v10/i04/p0477p0493/MAIN.PDF
http://www.cogsci.rpi.edu/CSJarchive/1986v10/i04/p0477p0493/MAIN.PDF
http://www.vetta.org/documents/ui_benelearn.pdf
http://mattmahoney.net/dc/mmahoney00.pdf
http://mattmahoney.net/dc/paq1.pdf
http://mattmahoney.net/dc/cs200516.pdf
http://ctxmodel.net/files/PPMd/ShkarinPPMII.pdf
http://www.loebner.net/Prizef/TuringArticle.html
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
http://citeseer.ist.psu.edu/ziv78compression.html

