Rapid Development of Gzip with MaxJ

Nils Voss'2(®) Tobias Becker!, Oskar Mencer!, and Georgi Gaydadjiev!?

! Maxeler Technologies Ltd., London, UK
2 Imperial College London, London, UK
n.vossl6@imperial.ac.uk

Abstract. Design productivity is essential for high-performance appli-
cation development involving accelerators. Low level hardware descrip-
tion languages such as Verilog and VHDL are widely used to design
FPGA accelerators, however, they require significant expertise and con-
siderable design efforts. Recent advances in high-level synthesis have
brought forward tools that relieve the burden of FPGA application
development but the achieved performance results can not approximate
designs made using low-level languages. In this paper we compare dif-
ferent FPGA implementations of gzip. All of them implement the same
system architecture using different languages. This allows us to com-
pare Verilog, OpenCL and MaxJ design productivity. First, we illustrate
several conceptional advantages of the MaxJ language and its platform
over OpenCL. Next we show on the example of our gzip implementation
how an engineer without previous MaxJ experience can quickly develop
and optimize a real, complex application. The gzip design in MaxJ pre-
sented here took only one man-month to develop and achieved better
performance than the related work created in Verilog and OpenCL.

1 Introduction

Gzip is a popular utility and widely used file format for lossless data compression.
In this paper, we compare different implementations of the gzip compression on
FPGAs using various languages. All implementations use very similar system
architectures and are inspired by previous work by IBM [1].

This study provides an opportunity to show, how choices regarding the pro-
gramming language offer distinct trade offs in productivity, performance and area
utilization. This is of special interest, since FPGAs provide many possibilities to
accelerate tasks while reducing energy consumption at the same time.

Designer productivity, and thereby development time, is a major cost factor
in system design. While we acknowledge the challenges with accurately measur-
ing productivity, especially in a comparable and quantified way, we still draw
some claims on productivity advantages in the context of gzip development.

In recent years, different high-level synthesis tools emerged, in order to over-
come the high complexity of hardware description languages such as VHDL and
Verilog especially when targeting FPGAs. One of these tools provided by Altera
is based on the OpenCL standard [2]. The programmer writes C-like code with
additional OpenCL features to guide Altera’s SDK in creating FPGA bitstreams.

© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 60-71, 2017.
DOI: 10.1007/978-3-319-56258-2_6

Rapid Development of Gzip with MaxJ 61

A different approach are new languages for hardware description, which main-
tain the concepts known from high-level programming languages and thereby
preserve their comfort while targeting hardware. One example is MaxJ by Max-
eler and OpenSPL [3]. MaxJ is a Java based language with additional features
and libraries to enable the rapid creation of FPGA designs.

To emphasize the OpenCL advantages Altera published the results of their
gzip implementation [4] and compared them to results published by IBM. In
this paper, an implementation of the same algorithm in MaxJ is presented and
compared to related work in Verilog (IBM) and OpenCL (Altera).

The main contributions of this paper are:

— the analysis of various MaxJ advantages over OpenCL;
— a high-throughput gzip compression design;
— a productivity comparison of OpenCL, Verilog and MaxJ for gzip.

The paper is structured as follows. First in Sect. 2, we outline the background in
high-level synthesis approaches, present MaxJ including its supporting ecosys-
tem and give a short overview of OpenCL and Altera SDK. In Sect. 3 we briefly
explain gzip, discuss existing gzip implementations and present the design con-
siderations on implementing gzip on an FPGA. In Sect.4 we study different
implementation decisions and the differences between MaxJ and OpenCL. The
performance of our design is compared against state-of-the-art implementations
in Sect.5. In Sect.6 we examine the productivity advantages of the different
languages and in Sect. 7 we draw our final conclusions.

2 Background - High-Level Design

FPGA designs are typically developed in low-level hardware description lan-
guages such as Verilog and VHDL. Designing in such languages can result in
fast and efficient hardware implementations, but they require considerable skill
and effort, which means that their productivity is low. There have been a wide
range of approaches to raise the productivity of FPGA design. A typical approach
to boost productivity is IP blocks reuse. Another possibility is to automatically
generate FPGA designs from domain-specific tools such as Matlab Simulink or
LabView but this is naturally limited to certain application types. It has also
been proposed to increase productivity by using overlay architectures [5]. These
provide a number of customisable templates that can be quickly used offering a
compromise in efficiency, performance and development time.

Recently, various high-level synthesis tools have become available. These typ-
ically attempt to create FPGA designs from conventional programming lan-
guages, such as C, and often require some form of manual intervention in the
transformation process.

Vivado HLS is a tool developed by Xilinx. It accepts C, C++ and System-
C as inputs and supports arbitrary precision data types. Xilinx claims a 4x
speed up in development time and a 0.7Xx to 1.2x improvement for the Quality

62 N. Voss et al.

of Result compared to traditional RTL design [6]. Vivado HLS is not a push-
button C-to-FPGA synthesis tool and requires various manual transformations
to customise the hardware architecture and achieve well performing designs.

Additionally Xilinx provides SDAccel which is a programming environment
for OpenCL, C and C++. Additionally to the compiler, it also provides a sim-
ulator and profiling tools. Xilinx claims to achieve up to 20% better results
than with hand-coded RTL designs and 3x better performance and resource
efficiency compared to OpenCL solutions by competitors. SDAccel also supports
partial runtime reconfiguration of FPGA regions without halting the remaining
accelerators running on the chip [7].

IBM’s Liquid Metal supports data flow and map-reduce. The Lime language
is Java based and supports CPUs as well as FPGAs and GPUs. The hardware
type is chosen at runtime based on available capacities in the datacenter [§].

Catapult C creates FPGA and ASIC designs from ANSI C++ and System-
C descriptions [9]. Similar to other high-level synthesis tools, it requires the
designer to perform iterations on the original C-code and manually tweak the
hardware architecture in order to achieve a fast implementation.

Chisel is a Scala based hardware description language. Unlike other
approaches focusing on synthesis from a C-like language, the concept behind
Chisel is to add modern programming language features to a hardware descrip-
tion language. Design is still low level but the goal is to improve productivity by
supporting high-level abstractions in the language [10].

The next section will explain the main advantages and differences of MaxJ.

2.1 MaxJ Development Ecosystem

MaxJ builds upon data-flow. A conventional processor reads and decodes instruc-
tions, loads the required data, performs operations on the data, and writes the
result to a memory location. This iterative process requires complex control
mechanisms that manage the basic operations of the processor.

In comparison, the data-flow execution model is greatly simplified. Data flows
from memory into the chip where arithmetic units are organized in a graph
structure reflecting the implemented algorithm.

In contrast to the majority of high-level synthesis tools, MaxJ is not generat-
ing hardware designs from control-flow oriented, and hence sequential, languages
like C or C++. The programmer is expected to describe his/hers application as
an inherently parallel data-flow graph structure in 2D space.

MaxJ is based on Java to benefit from its syntax while providing additional
APIs for data-flow graph generation at scale. At build time the Java code creates
the data-flow graph describing the hardware structure. This means that, for
example, an if-else statement will be evaluated at build time to add either the
nodes described in the if block or those in the else part to the data-flow graph
and thereby to the hardware. This enables code fine tuning to different use cases
and the creation of libraries covering many use-cases without overheads.

MaxCompiler translates MaxJ code into FPGA configurations. It
also provides cycle accurate software simulation. In combination with

Rapid Development of Gzip with MaxJ 63

Maxeler’s MaxelerOS and the SLiC library the simulation models or hardware
configurations are tightly integrated into a CPU executable written in for exam-
ple C, Fortran, Matlab or Python to allow rapid development of FPGA acceler-
ated applications. The communication between FPGA and CPU is implemented
using very high-level streaming primitives and there is no need for the user to
worry about any of the low level details.

Maxeler’s data-flow systems are built using its proprietary PCle data-flow
engines (DFEs). The MAX4 DFEs incorporate the largest Altera Stratix-V
FPGAs as a reconfigurable computing substrate. This device is connected to a
large capacity parallel DRAM (24-96 GB) to facilitate large in-memory datasets.
Additionally DFEs for networking are available which offer additional connec-
tivity via a maximum of three 40 GBits ports.

2.2 Altera OpenCL Compiler

OpenCL is a standard that aims at providing a single API to target different
heterogenous computing platforms with a special focus on parallelization and
allows a programmer to target different hardware platforms and instruction sets
with the same code. While OpenCL does not guarantee optimal performance for
the same code on all hardware platforms, it does guarantee correct functionality
(if no vendor specific extensions are used) [11].

OpenCL uses a C-like syntax and provides many custom datatypes to enable
easier access to SIMD instructions as well as additional syntax which takes the
memory hierarchy used in modern hardware architectures into account. The
workload can be distributed between multiple devices and is executed by process-
ing elements on the available hardware. A scheduler distributes the computing
tasks to the processing elements at runtime.

The first versions of OpenCL mainly targeted multicore CPUs, GPUs and
DSPs but OpenCL can also be used for FPGA programming since Altera and
Xilinx published their OpenCL SDKs for FPGAs [2,4,7].

The Altera OpenCL compiler supports the core OpenCL 1.0 features as well
as extensions, which, for example, support streaming of data from an ethernet
interface to a compute kernel. Altera OpenCL also provides an emulator for
functional verification of the created designs in order to speed up the develop-
ment time. In addition, a detailed optimization report and a profiler is provided
to allow easier development of more efficient designs.

3 Gzip

Gzip is a utility [12] as well as a file format for lossless data compression [13]. For
data compression DEFLATE [14] is used, which is a combination of Lempel-Ziv
compression [15] and Huffman encoding [16].

The idea of the Lempel-Ziv compression algorithm is to replace multiple
occurrences of equivalent byte sequences with a reference to the first sequence.
This reference consists of a marker, showing that this data has to be interpreted

64 N. Voss et al.

as an index, a match length, indicating how many bytes are equal, and an offset,
defining the distance to the first occurrence of the byte sequence.

Huffman coding replaces all data in a symbol stream with code words. It is
an entropy encoder, which means that frequently used words will require less
bits. A Huffman code is a prefix code which guarantees that no code word is a
prefix of any other codeword and, as a result, unambiguous encoding.

The gzip standard knows two different forms of Huffman codes. The simpler
one is the static Huffman code which is defined in the standard itself [14]. A
different option is to create a customized Huffman code based on the actual input
data. The Huffman code itself then needs to be encoded as well to enable the
decompressor to correctly decode the data. Therefore the compressed Huffman
code description is placed before the actual compressed data in the data-stream.
While often providing better compression ratio this method is more complex to
implement and leads to extra calculations at runtime.

Since gzip is so widely used, there are many different implementations of it.
Intel published a high throughput CPU implementation achieving a throughput
of 0.34 GB/s [17]. There are also many high-throughput FPGA implementations
like the already mentioned implementations by Altera [4] and IBM [1] which
achieve throughputs between 2.8 and 3 GiB/s. A more recent FPGA based pub-
lication by Microsoft reports a throughput of 5.6 GB/s [18]. In addition, ASIC
implementations of gzip exist with throughputs of up to 10GB/s [19].

3.1 Gzip FPGA Implementation

The majority of gzip FPGA implementations struggle to process more than one
byte per cycle, which severely limits throughput [20,21]. The problem is that
the encoding of a symbol could also influence the encoding of the next one.

The approach used in this paper (the same as in [1,4]) enables processing of
multiple byte per cycle using hash tables. In each cycle a fixed number of bytes
is loaded and for each byte a hash key is computed. This hash key is usually
based on the byte itself as well as a pre-defined number of following symbols.

These hash keys are used to address the hash tables. The hash tables store
possible matches for a given hash value. There are as many hash tables as bytes
read per cycle. So every computed hash key is used to update one of these tables.
On the other side a parallel lookup is performed on all hash tables in order to
find all possible matches. The whole process is depicted in Fig. 1.

The hash tables are also used to store the already seen data. If n bytes are
read per cycle than n bytes have to be stored for each symbol in the hash table.
These n bytes consist of the symbol itself followed by the next n — 1 input bytes.

This avoids a large memory structure with many read ports holding all the
previous data. Instead, only the data that can be referenced by the hash tables
is stored. The disadvantage of this solution is that each symbol in the input
window is stored n times. The hash table memory requires a wide word width
and n read and one write ports, which strongly increases area usage.

In order to avoid the O(n?) memory usage complexity a different hash table
architecture was proposed by Microsoft [18]. Instead of n hash tables with n read

Rapid Development of Gzip with MaxJ 65

Current input Next input
A A

(
abcdef‘g

Hash Table 2
Hash Table 3
Lookup Lookup

Fig. 1. Hash table implementation

Hash Table 1

ports they used a fixed number of hash tables with one read port each. The main
idea is, that the possible hash keys are equally distributed onto different hash
tables. Then if m hash tables are created, the least significant log2(m) bits are
used to determine which hash table is used for each hash value. In order to be
able to save different data items for the same hash value, each hash table can be
copied. So in order to avoid hash conflicts a different copy of the hash table can
be used. The hash tables run at double frequency compared to the remaining
design which effectively doubles the number of read and write ports.

The biggest problem with this implementation is that for a given set of
least significant bits only two writes can be accomplished in one cycle. All other
matches, which hash keys have the same least significant bits, have to be dropped
slightly reducing the compression ratio. With this optimizations and a few other
small changes Microsoft was able to increase the throughput significantly with
limited impact on the compression ratio.

Since Microsoft did not report design time we can not directly compare
against their design process and will focus on those used by Altera and IBM.

The hash table lookup provides n? possible matches, since we perform n
lookups for each input byte. The first step is to perform the actual match search,
which requires a comparison of the input data with the already processed data
stored in the hash tables. The target is to find the longest match starting at each
position in the input window, to allow encoding with as few bits as possible. In
order to avoid complex inter-cycle dependencies the maximal match length is
limited to the number of bytes read per cycle.

Since one byte may be covered by multiple matches, only a selection of all
found matches has to be encoded. Decisions made here also impact the encoding
in the next cycle, since a match might also cover symbols of the next input
window. Since the design has to be fully pipelined, this inter cycle dependency
has to be resolved within one cycle to prevent pipeline stalls.

If a match only covers a few symbols it might be cheaper to encode this as
literals and not as a match. In this case the match will be ignored. A heuristic
is applied on the remaining matches to resolve the inter-cycle dependencies.

This heuristics takes the match for the last symbol in the input window as
the maximal match length into the input window of the next cycle. Since the
maximal match length is n the last symbol is never covered by a match in a
previous input window and thereby we do not have to consider any other inter

66 N. Voss et al.

cycle dependencies here. While this heuristic may decrease the compression ratio,
it enables a fully pipelined design while limiting the design complexity.

In order to finally select the matches first all matches for symbols that were
already covered by a match from the previous cycle are removed. Then the reach
of each match is calculated, which is defined as the sum of the position of the
current symbol and the match length. If two symbols have the same reach, they
encode all symbols up to the same position and the match which covers more
symbols in total is selected. In [4] a more detailed explanation is available.

At last, the data has to be encoded using Huffman coding. This can be done
symbol-wise after the match selection. These code words then get combined using
shifters and OR~gates to form the final output bitstream.

4 MaxJ Implementation Advantages

Our gzip implementation is similar to the implementation reported by Altera [4]
to allow easier comparison between OpenCL and MaxJ implementations.

MaxJ custom datatypes offer a significant advantage. While C and OpenCL
only support char (8bit), short (16bit), int (32bit) and similar types, MaxJ
allows programmers to define non-standard datatypes such as a 5bit integer.
Even for a byte-based algorithm like gzip many values do not need data types
with power of 2 bit-widths. This applies for example for the Huffman code words,
the match length, the match offset or the control signals.

The part of the architecture where the biggest number of similar modules
exist is the match length calculation, since we have n? possible matches. The
straight forward way of implementing this would be to byte-wise compare each
byte of the input data with the data referenced by the lookup. As a result, if the
bytes are equal and if all previous bytes were equal as well, the match length can
be incremented as shown in Fig.2. So if we process 16 Bytes per cycle we have
to use 16 comparators, adders and MUXSs per match and in total 4096 units of
each element. Hence, the resource usage has a complexity of O(n?).

condition

condition

condition

length

Fig. 2. Simple match length

Altera uses bit vectors instead so that for every similar byte a bit in the vector
is set as shown in Listing 1.1 and Fig.3. The advantage is that OR operations
and shifters cost less than ADDs and MUXs. It also enables the scheduler to

Rapid Development of Gzip with MaxJ 67

use less FIFOs to implement this part of the algorithm, since all OR operations
can be scheduled in the same clock cycle and there is no dependency between
the different iterations of the unrolled loop. As a result the OR operations can
be scheduled in a tree like fashion which reduces the number of required FIFOs.
By using this technique a 5% reduction of logic resources is claimed.

1||// compare current/comparison windows
2 || #pragma unroll
3 || for (char k = 0; k < LEN; k++)
4|4
5 if (curr_window[j + k] == comp_window[kI[iI[jI)
6 length_bool[i][j] I= 1 << k;
713
Listing 1.1. OpenCL implementation of match length calculation

A

=

2
£ E £
w 2 B
s £ E=S
g 38 K]

8

Fig. 3. Altera match length Fig. 4. MaxJ match length

Writing the same code in MaxJ would already reduce resources, since the shifts
are omitted in hardware as the result of these operations would be computed at
build time instead. This, as stated in [4], is not done by the OpenCL SDK.

Listing 1.2 shows an equivalent MaxJ implementation with some additional
improvements. The # operator is used to concatenate bits. So in this case we
concatenate all results of the comparators bit-by-bit, which does not use any
additional resources. Also we do not need any registers or FIFOs because the
concatenation has no latency at all. The only costs come from the comparators.
The result of that is also shown in Fig. 4.

1 || // compare current/comparison windows

2 || lengthBool[i][j] = currWindow[j] === compWindow [0][il[j];

3 || for (int k = 1; k < LEN; k++) {

4 lengthBool [i][j] #= currWindow[j + k] === compWindow[k][il[jl;
51

Listing 1.2. MaxJ implementation of match length calculation

Other MaxJ language features make it easier to meet timing. For example, the
calculated hash keys are used at many different places and, as a result, have
quite a large fanout. Since a huge chunk of the available memory resources on
the FPGA are used for hash tables, the hash keys have to be routed to very
distant locations of the chip. In order to compensate this and help meeting
timing, an additional register was added after the hash key calculation as shown

68 N. Voss et al.

in Listing 1.3. The place and route tools can now duplicate this register, if needed,
in order to distribute the signal to all hash tables, where it is used for addressing.
1

2
3

for (int i

= 0; i < bytesPerCycle; i++) {
hashKey[i] =

optimization.pipeline(calculateHashKey (currWindow, i));

}

Listing 1.3. Adding a Register to the hashKey signal, which is returned by the
calculateHashKey() function. It is then passed into the optimization.pipeline() function
to add the register.

On the FPGA platform used by Altera the input data gets transmitted over
PCle to DDR3 memory. The same principle applies to the encoded data which
first is written into DDR3 memory before it is send back to the host via PCle.

In the MaxJ design the data does not need to be buffered in external memory
but can be send directly via PCle to the FPGA where it is processed.

Since on-chip memory capacity is the limiting factor of the gzip design a
different implementation of the Huffman encoding was used. Altera used a lookup
table which can be changed by the CPU. In our design we calculate the Huffman
code words on the fly and do not waste any on-chip memory.

This slightly limits the adaptability since only one fixed Huffman tree is
available. This tree is optimized to all possible match lengths but could also be
optimized for known payloads. While no big impact on compression ratio could
be observed, this change is key in enabling our design to process 20 bytes per
cycle. Both, IBM and Altera designs process only 16 Bytes per cycle.

5 Performance Evaluation

We now compare the performance and area utilization of the different designs.
The area utilization is compared in Table 1. First, we are going to only compare
the 16 byte per cycle MaxJ design with the designs implemented by IBM and
Altera, since all these designs process the same number of bytes per cycle. The
MaxJ design uses significantly less resources as the OpenCL design. The area
utilization numbers for the IBM design shown here were estimated and reported
by Altera based on a chip image [4]. So while we can only work with estimations,
we can still assume that the logic utilization of the MaxJ design in comparison
to the Verilog design is at least on par. Only the RAM utilization is higher which
is probably caused by the scheduling overhead of 443 pipeline stages in contrast
to the 17 stages of the Verilog design. Despite the fact that the OpenCL design
uses only 87 pipeline stages the MaxJ design uses fewer memory resources.
Throughput and compression ratio differences are depicted in Table2. The
compression ratio for all designs was evaluated using the calgary corpus [22] and
the geometric mean. While the compression ratio of the Intel, IBM and Altera
designs are almost identical, the MaxJ design shows a slight improvement. The
reason for this is probably a different hashing function (as described in [23])
which improves the compression ratio at the cost of additional logic resources.

Rapid Development of Gzip with MaxJ 69

Table 1. Area utilization of the gzip compression on Stratix V FPGA

IBM (Verilog) [1] | Altera MaxJ (16 Bytes) | MaxJ

(OpenCL) [4] (20 Bytes)
Logic utilization | 45% 47% 42.8% 51.1%
RAM 45% 70% 59.2% 88.6%

IBM implementation figures were estimated by Altera using a chip image [4]

Table 2. Compression ratio and throughput

Intel (i5 650 |[IBM Altera MaxJ MaxJ
CPU) [17] |(Verilog) [1] | (OpenCL) [4] | (16 Byte) (20 Byte)
Compress. ratio|2.18 2.17 2.17 2.25 2.27

Throughput 0.338GB/s |3.22GB/s |3.056GB/s 3.20GB/s |5.00GB/s
0.315GiB/s 13.00GiB/s [2.84GiB/s 2.98GiB/s |4.66 GiB/s

While IBM reported a frequency of “just under 200 MHz” [1], Altera claims
a frequency of 193 MHz. Our MaxJ design for 16 Bytes successfully runs at
200 MHz without any optimizations aimed to help meeting timing.

When we use the available space to process 20 bytes per cycle instead of 16
and additionally perform timing optimizations, our design achieved a throughput
of 5GB/s at 250 MHz. This makes our design nearly 15x faster than Intel’s
high throughput CPU implementation and nearly 1.8x faster than the OpenCL
implementation by Altera [1,4].

6 Productivity Discussion

In [4] Altera reported one month development time for their OpenCL gzip imple-
mentation. The MaxJ design presented here was performed by one intern student
within a single month. The intern was novice to MaxJ and had only one week
to work through the MaxJ tutorials. This clearly shows that learning MaxJ can
be quick with a software development background in high-level languages.

An advantage of HLS in contrast to classical hardware description languages
is, that the code is very readable and compact (the entire MaxJ gzip code is
only 959 lines). This makes it easier to focus on optimizations and to make big
changes in the architecture, since modern programming tools like unit tests can
be used in combination with the simulator to quickly validate functionality. For
example, the switch from the 16 byte per cycle design to 20 bytes was done by
only changing a single constant in the code.

Because the MaxJ tools create deeply pipelined structures meeting timing is
easier. While deep pipelining increases the overall memory usage it enables the
designer to use more space of the chip productively.

As previously mentioned, Microsoft also reported an FPGA based gzip design
using a slightly modified design architecture [18] achieving 5.6 GB/s on a Stratix

70 N. Voss et al.

V FPGA. We were able to also create a design using their architecture and again
achieve a higher throughput of 9.6 GB/s. Since we could reuse most of the already
written MaxJ code, the actual implementation time went down to roughly one
week. A few more weeks of not full-time effort were needed in order to fine-tune
parameters like the used hash function and hash tables configuration as well as
improve timing. It has to be noted that while meeting timing is time consuming
it is not as costly as development time, since it mainly requires CPU time and
not engineering effort.

When comparing to OpenCL, we can see that in a similar time far better
results could be achieved with MaxJ. A reason for this is the more direct control
over the hardware provided by MaxJ. This allows designers with good under-
standing of the underlying hardware to benefit from those additional improve-
ments. For example, the option to directly insert registers in the design (as
shown in Sect.4) allows easier timing closure. Another good example is the
direct impact that widths of the variables have on the hardware area utilization.

While it is possible to reuse existing OpenCL designs for CPUs and GPUs to
target FPGAs it has to be noted, that the performance of the ported designs will
be suboptimal in most cases. For example in [24] the same OpenCL code was
executed on CPUs and FPGAs. The CPU versions all outperform the FPGA ver-
sions even though efficient hardware implementations for the tested algorithms
exist. This shows that, similar to most other high-level synthesis frameworks
(see Sect.2), it is necessary to employ a series of code transformations in order
to create efficient hardware designs. As a result a change of the programming
language as well as the associated toolchain introduces only a limited overhead.

The above suggests that developing in MaxJ is significantly faster than in
OpenCL since we had enough time to perform careful timing optimizations and
compression ratio improvements. As a result this enabled us to deliver a signifi-
cantly better bitstream in terms of throughput and compression ratio.

7 Conclusion

In this paper we presented a rapid FPGA implementation of gzip compression.
We demonstrated that using MaxJ for high-level synthesis enabled us to achieve
better results within the same amount of development time as compared to
OpenCL. Furthermore, we showed that MaxJ and its development tools enable
very competitive development times in comparison to classical hardware descrip-
tion approaches. Our design outperforms the OpenCL implementation by 1.8x
in terms of throughput and delivers 5% better compression ratio by using only
~10% more resources. In addition, the presented design achieves a 1.7x higher
throughput as compared to the Verilog implementation by IBM.

References

1. Martin, A., Jamsek, D., Agarwal, K.: FPGA-based application acceleration: case
study with GZIP compression/decompression stream engine. In: International Con-
ference on Computer-Aided Design (ICCAD), November 2013

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

Rapid Development of Gzip with MaxJ 71

Altera: OpenCL for Altera FPGAs: Accelerating Performance and Design Pro-
ductivity (2012). http://www.altera.com/products/software/opencl/opencl-index.
html

OpenSPL (2015). http://www.openspl.org

Abdelfattah, M.S., Hagiescu, A., Singh, D.: Gzip on a chip: high performance
lossless data compression on FPGAs using OpenCL. In: International Workshop
on OpenCL ACM, pp. 1-9 (2014)

Rashid, R., Steffan, J.G., Betz, V.: Comparing performance, productivity and scal-
ability of the TILT overlay processor to OpenCL HLS. In: Field-Programmable
Technology (FPT). IEEE, pp. 20-27 (2014)

Vivado HLS. http://www.xilinx.com/support /documentation/sw_manuals/ug1197-
vivado-high-level-productivity.pdf. Accessed 18 Nov 2015

Xilinx: The Xilinx SDAccel Development Environment (2014). http://www.xilinx.
com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf

Liquid Metal (2015). www.research.ibm.com/liquidmetal/

Catapult C (2015). http://calypto.com/en/products/catapult/overview/

. Bachrach, J., et al.: Chisel: constructing hardware in a Scala embedded language.

In: Design Automation Conference (DAC). ACM, pp. 1216-1225 (2012)

Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66-73 (2010)

Gzip (2015). http://www.gzip.org

Deutsch, P.: Gzip file format specification version 4.3 (1996). http://tools.ietf.org/
html/rfc1952

Deutsch, P.: RFC 1951 deflate compressed data format specification version 1.3
(1996). http://tools.ietf.org/html/rfc1951

Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337-343 (1977)

Huffman, D.A.: A method for the construction of minimum-redundancy codes. In:
Proceedings of IRE, vol. 40, no. 9, pp. 1098-1101 (1952)

Gopal, V., Guilford, J., Feghali, W., Ozturk, E., Wolrich, G.: High Perfor-
mance DEFLATE Compression on Intel Architecture Processors (2011). http://
www.intel.com/content /dam/www /public/us/en/documents/white-papers/
ia-deflate-compression-paper.pdf

Fowers, J., Kim, J.-Y., Burger, D., Hauck, S.: A scalable high-bandwidth architec-
ture for lossless compression on FPGAs. In: 23rd IEEE International Symposium
on Field-Programmable Custom Computing Machines, pp. 52-59 (2015)

AHA 378 (2015). http://www.aha.com/data-compression/

Huang, W.-J., Saxena, N., McCluskey, E.J.: A reliable LZ data compressor on
reconfigurable coprocessors. In: Symposium on Field-Programmable Custom Com-
puting Machines. IEEE, pp. 249-258 (2000)

Hwang, S.A., Wu, C.-W.: Unified VLSI systolic array design for L.Z data compres-
sion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9(4), 489-499 (2001)
Calgary Corpus (2015). http://corpus.canterbury.ac.nz/descriptions/#calgary
Sadakane, K., Imai, H.: Improving the speed of LZ77 compression by hashing and
suffix sorting. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. E83—A(12),
26892698 (2000)

Ndu, G., Navaridas, J., Lujan, M.: Towards a benchmark suite for OpenCL FPGA
accelerators. In: Proceedings of 3rd International Workshop on OpenCL (IWOCL
2015), NY, USA, Article 10

http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.openspl.org
http://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
http://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
www.research.ibm.com/liquidmetal/
http://calypto.com/en/products/catapult/overview/
http://www.gzip.org
http://tools.ietf.org/html/rfc1952
http://tools.ietf.org/html/rfc1952
http://tools.ietf.org/html/rfc1951
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
http://www.aha.com/data-compression/
http://corpus.canterbury.ac.nz/descriptions/#calgary

	Rapid Development of Gzip with MaxJ
	1 Introduction
	2 Background - High-Level Design
	2.1 MaxJ Development Ecosystem
	2.2 Altera OpenCL Compiler

	3 Gzip
	3.1 Gzip FPGA Implementation

	4 MaxJ Implementation Advantages
	5 Performance Evaluation
	6 Productivity Discussion
	7 Conclusion
	References

